
Lab Book
Zachary Whitlock

EE-407: Embedded Systems
Hardware

Oregon Institute of Technology
Professor: Allan Douglas

Fall Term 2020

Table of Contents
Lab 1..4

Introduction...4
Part 1 – Setting up Ubuntu Laptop..4
Part 2 – Checking Linux Distributions..4
Part 3 – Basic Linux Commands...5

Static IPs...6
Conclusion...7

Lab 2..7
Introduction & Objective...7
Part 1 – Installing Eclipse & Cross Compilation..8
Part 2 – Eclipse Remote Systems..9
Part 3 – Interacting with GPIO..9
Conclusion...9
Appendix – Code...9

Lab 3..10
Introduction...10
Part 1..10
Part 2 – Dissecting the Code...11
Part 3 – Modifying the Code...12
Conclusion...12
Appendix – Code...13

Client.C...13
Server.c...15

Lab 4..18
Part 1 – Sensor...18

Connection..18
Part 2- Actuator...19

Connection..19
Conclusion...21

Lab 5..21
Introduction...21
Part 1 – Sensor...21
Part 2 – Actuator..24
Part 3 – Communication Protocol...25

Actuator Interface...25
Sensor Interface..25

Conclusion...26
Appendix...27

C Program...27
Lab 6..31

Introduction...31
Part 1 – The Protocol...31
Part 2 – The Server..31
Part 3 – The Client...33
Part 4 – Test and Integration..33
Conclusion...34

Appendix...34
Protocol...34
Code..35

Lab 7..36
Introduction...36
Part 1 – GUI Design..36
Part 2 – Testing GUI on RPi..37
Part 3 – GUI Interfacing to client.c...39
Conclusion...41
Appendix...41

Code..41
Code – main.c...41
Code – msgQueue.h..44
code – msgQueue.c...45

Lab 8..47
Introduction...47
Part 1..47

Modifications..47
Setting up a Reverse SSH Tunnel...47
Connecting to Another BBB Server...48

Part 2..49
Conclusion...50
Appendix...50

Lab 1
Introduction
Objective: To install and configure a software development environment for using
throughout the school term.

Part 1 – Setting up Ubuntu Laptop
I normally use Linux as my main operating system, so I already have an ubuntu laptop.
Shown is a screenshot from my normal desktop, but I have access to vanilla ubuntu as well.

Part 2 – Checking Linux Distributions
The raspberry pi and BeagleBone Black boards were configured so that I could remotely
connect to them over my network. This screenshot shows both the raspberry pi and
beaglebone and their linux versions.

Part 3 – Basic Linux Commands
Laptop commands:

ls: Lists the files in the current directory

mkdir: Makes a new directory

cd: Move into another directory

pwd: Show the current directory

cat: Print a file into the terminal

rm: Remove/delete a file

whoami: Print your username

man: Show the manual entry for a command

Raspberry Pi: CPU temp, clockspeed, and temperature

Static IPs
This also demonstrates that I’ve ssh’d into the beaglebone and pi.

Conclusion
All three devices, the raspberry pi, the beaglebone black board, and the laptop, were
configured with a linux operating system and made to talk to eachother with static IP
addresses.

It was difficult at first to get the static IP addresses to work correctly, but after reading a few
more articles and modifying the ‘/etc/dhcpd.conf’ file, the static addresses were established.

It also took a while to figure out that you have to hold a button down on my beaglebone
black to make it boot to the SD card, it was booting to onboard flash and had a super old
version of linux on it which wasn’t working with the apt package manager.

Lab 2
Introduction & Objective
Often times it is advantageous to use a powerful IDE for the sake of writing and compiling
code. An IDE (Integrated Development Environment) has many tools built into it, but is
essentially a text-editor at the core. IDEs often will catch syntax errors and provide extra
functionality, such as search & replace. The issue is, it’s not normally practical to run
powerful development tools on the actual device you are developing for. Less powerful ARM
devices like the raspberry pi and beaglebone black do not work well as development
computers but are excellent embedded processors. Hence, we develop our code on a
powerful desktop or laptop computer and cross-compile the code for ARM. Cross-
compilation consists of using a normal (Intel X86) computer and compiling for ARM.

The objective of this lab is to use the Eclipse IDE to compile simple C and C++ programs for
our ARM devices (Raspberry and Beaglebone). Additionally we will manipulate the I/O pins
of the devices by use of the Linux terminal.

Part 1 – Installing Eclipse & Cross Compilation
The Eclipse IDE was downloaded from www.eclipse.org/downloads/, the most recent version
was used and placed on a Linux (ubuntu) system.

http://www.eclipse.org/downloads/

Additionally, by the use of the ‘apt’ package manager on Ubuntu, the cross-compilation tools
were installed (‘gcc-arm-linux-gnueabi’, ‘arm-linux-gnueabi-gcc’) and then a new
configuration was created in Eclipse for the ARM toolchain. The hello-world program was
written in both C++ and C and compiled for ARM. The files were copied by using the `scp`
(secure copy) command and then executed on the BBB and RPi.

Part 2 – Eclipse Remote Systems
For easier transfer of files between the eclipse IDE and the
ARM devices, a add-on was installed called “Remote
Systems User Actions”. The plugin was configured to
connect to both the RPi and the BBB with ssh and allows
files to simply be dragged and dropped between devices.

Part 3 – Interacting with GPIO
From resources found online, it was discovered that the
commands to write an LED on the RPi and BBB were ‘echo

255 > /sys/class/leds/led0/brightness’ and ‘echo 1 >
/sys/class/leds/beaglebone\:green\:usr3/brightness’ respectively.

Conclusion
In this lab I learned how to
configure Eclipse for compilation

(and cross compilation) of C and C++ code. I also learned how to toggle the GPIO pins from
bash in linux, and how to move files between Eclipse and the embedded devices directly.

Appendix – Code
//==
// Name : Test_Cpp_Code.cpp
// Author : Zachary Whitlock
// Version :
// Copyright : Copyright no
// Description : Hello World in C++, Ansi-style
//==

#include <iostream>
using namespace std;

int main() {
cout << "Hello World! - CPP - ZW" << endl;
return 0;

}
/*
 ==
 Name : Test_C_Code.c
 Author : Zachary Whitlock
 Version :
 Copyright : Copyright no
 Description : Hello World in C, Ansi-style
 ==
 */

#include <stdio.h>
#include <stdlib.h>

int main(void) {
puts("Hello World! - C - ZW");
return EXIT_SUCCESS;

}

Lab 3
Introduction
The objective of this lab is to use the network sockets on the RPi and BBB to transmit and
receive data between devices. The code was given as example code and makes use of the
Linux socket system. Along the way the use of sockets should become much easier as I learn
how to use them. With sockets, we can send data between different embedded devices on the
same network.

Part 1
The example code was compile for ARM Devices and transferred with scp before using
eclipse for future revisions of the code. The client executable was placed on the RPi and the
server code was placed on the BBB.
First, the server code was executed
using the ‘./’ syntax, and then,
switching to the RPi, the client code
was executed similarly. The
executable worked perfectly as can
be observed in figures 1 & 2.

Figure 1: Raspberry pi

Figure 2: Beaglebone

Part 2 – Dissecting the Code
Function: Parameters: Returns: Header:

error() pointer to char N/A errno.h

This function is used to report general problems during program execution.

perror() Pointer to char N/A stdio.h

Prints out an error

func() An integer An integer N/A

Multiplies a given integer by 2 and then returns the result

sendData() Two integers N/A N/A

Converts an integer to a string and attempts to write to socket, throwing an
error if unsuccessful.

getData() An integer An integer N/A

Attempts to read data from the given socket file descriptor, throws an error
if unsuccessful.

sprintf() Two pointers to chars An integer stdio.h

Takes an input, formats it, and stores the result into a string. Returns the
number of characters stored in the array.

read() Integer, void *, size_t ssize_t unistd.h

Attempts to read and store data from a file given by a file descriptor.

write() Integer, void *, size_t ssize_t unistd.h

Writes a number of bytes to a given file by it’s descriptor. Returns number of
bytes actually written.

strlen() Char pointer size_t string.h

Returns the length of a null-terminated string in bytes.

atoi() Char pointer An integer stdlib.h

Converts a string to an integer and returns it.

bzero() Void pointer, size_t N/A string.h

Sets a number of bytes to 0.

sizeof() A type or expression An integer N/A

Returns the size of a piece of data in

htons() uint16_t uint16_t netinet/in.h

Converts input to network byte order, which is big-endian, for socket
communication.

bind() 3 ints, socket_t An integer sys/socket.h

Assigns an address to a specified socket with the specified address format.

listen() Two ints An integer sys/socket.h

Listens on a given socket and creates a queue of given size.

accept() Two integers, socklen_t * An integer sys/socket.h

Accepts a connection request on a socket. Returns the file descriptor of the
new socket once a connection is accepted.

socket() Three integers An integer sys/socket.h

Creates a new socket given it’s domain, type, and protocol. Returns the file
descriptor of the new socket.

gethostbyname() Char pointer Hostent netdb.h

Returns information about the requested host, or a null pointer.

connect() Two integers, A socklen_t An integer sys/socket.h

Opens a connection between a file of given file descriptor and a socket with
given socket address.

close() An integer An integer unistd.h

Takes a file descriptor for a socket and closes it.

Part 3 – Modifying the Code
In this part of the lab, we modify the example code given to us such that we can send and
receive character arrays (strings). Both the client and server must be able to exchange
strings, and the maximum length is assumed to be 32 bytes.
Both the client and server programs had a “sendChars” and “getChars” function added, and
the code was modified such that it would still support integer data communication between
the two devices as well as characters by means of warning of characters with a special
integer.

The BBB was used as the server and the RPi was used as the client. Code was compiled
inside of Eclipse and copied to each device using the Remote Systems plugin.

Code is available in the appendix for this lab.

Conclusion
It was difficult to look through every function used in the socket programs and document
them. It wasn’t always clear how the function worked, and at least one of them (sizeof)
wasn’t a typical function and required different research. I eventually realized that eclipse
had several inbuilt tools for describing functions and also telling you which header file they
were included by.

In summary, I used sockets first transmit and receive integers between two different
embedded computers. Later, I upgraded the code to support sending and receiving character
arrays. Jump to Index

Appendix – Code
Client.C
/* A simple client program to interact with the myServer.c program on the
Raspberry.
myClient.c
D. Thiebaut
Adapted from http://www.cs.rpi.edu/~moorthy/Courses/os98/Pgms/socket.html
The port number used in 51717.
This code is compiled and run on the Macbook laptop as follows:

 g++ -o myClient myClient.c
 ./myClient

*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <netdb.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <arpa/inet.h>

char myMessage[32] = "Hello from client!";
char recievedChars[32];

void error(char *msg) {
 perror(msg);
 exit(0);
}

void sendData(int sockfd, int x) {
 int n;

 char buffer[32];
 sprintf(buffer, "%d\n", x);
 if ((n = write(sockfd, buffer, strlen(buffer))) < 0)
 error("ERROR writing to socket");
 buffer[n] = '\0';
}

void sendChars (int sockfd, char * myData) {
int myErr;
char buffer[32];
sprintf(buffer, myData);
if ((myErr = write(sockfd, buffer, strlen(buffer))) < 0)

error("ERROR: Failed to write string to socket");
buffer[myErr] = '\0'; // Terminate with null character?

}

int getData(int sockfd) {
 char buffer[32];
 int n;

 if ((n = read(sockfd,buffer,31)) < 0)
 error("ERROR reading from socket");
 buffer[n] = '\0';
 return atoi(buffer);
}

void getChars(int sockfd) {
int n;
if ((n = read(sockfd, recievedChars, sizeof(recievedChars))) < 0)

error("ERROR reading from socket");
}

int main(int argc, char *argv[])
{
 int sockfd, portno = 51717, n;
 char serverIp[] = "192.168.1.32";
 struct sockaddr_in serv_addr;
 struct hostent *server;
 char buffer[256];
 int data;

 if (argc < 3) {
 // error(const_cast<char *>("usage myClient2 hostname port\n"));
 printf("contacting %s on port %d\n", serverIp, portno);
 // exit(0);
 }
 if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
 error("ERROR opening socket");

 if ((server = gethostbyname(serverIp)) == NULL)
 error("ERROR, no such host\n");

 bzero((char *) &serv_addr, sizeof(serv_addr));
 serv_addr.sin_family = AF_INET;
 bcopy((char *)server->h_addr, (char *)&serv_addr.sin_addr.s_addr, server-
>h_length);
 serv_addr.sin_port = htons(portno);
 if (connect(sockfd,(struct sockaddr *)&serv_addr, sizeof(serv_addr)) < 0)
 error("ERROR connecting");

 for (n = 0; n < 9; n++) {
 sendData(sockfd, n);
 data = getData(sockfd);
 printf("%d -> %d\n",n, data);
 }
 // Put in "char" mode
 sendData(sockfd, -3);
 sendChars(sockfd, myMessage);

 getChars(sockfd);

 printf("Response: %s\n", recievedChars);
 // Stop the server
 sendData(sockfd, -2);

 int r;
 if (r = close (sockfd))
 error("Failed to close port!");
 return 0;
}

Server.c
/* A simple server in the internet domain using TCP.
myServer.c
D. Thiebaut
Adapted from http://www.cs.rpi.edu/~moorthy/Courses/os98/Pgms/socket.html
The port number used in 51717.
This code is compiled and run on the Raspberry as follows:

 g++ -o myServer myServer.c
 ./myServer

The server waits for a connection request from a client.
The server assumes the client will send positive integers, which it sends back
multiplied by 2.
If the server receives -1 it closes the socket with the client.
If the server receives -2, it exits.
*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>

#define AF_INET 2
#define INADDR_ANY 0

char myMessage[32] = "Hello from server!"; // Filled in main's arguments
char recievedChars[32];

void error(char *msg) {
 printf("error\n");

 perror(msg);
 exit(1);
}

int func(int a) {
 return 2 * a;
}

void sendChars (int sockfd, char * myData) {
int myErr;
char buffer[32];

sprintf (buffer, myData);
if ((myErr = write(sockfd, buffer, strlen(buffer))) < 0)

error("ERROR: Failed to write string to socket");
buffer[myErr] = '\0'; // Terminate with null character?

}

void sendData(int sockfd, int x) {
 int n;

 char buffer[32];
 sprintf(buffer, "%d\n", x);
 if ((n = write(sockfd, buffer, strlen(buffer))) < 0) {
 error("ERROR writing to socket");
 }
 buffer[n] = '\0';
}

void getChars(int sockfd) {
int n;
if ((n = read(sockfd, recievedChars,

sizeof(recievedChars))) < 0)
error("ERROR reading from

socket");
}

int getData(int sockfd) {
 char buffer[32];
 int n;

 if ((n = read(sockfd,buffer,31)) < 0)
 error("ERROR reading from socket");
 buffer[n] = '\0';
 return atoi(buffer);
}

int main(int argc, char *argv[]) {
 int sockfd, newsockfd, portno = 51717, clilen;
 char buffer[256];
 struct sockaddr_in serv_addr, cli_addr;
 int n;
 int data;

 printf("using port #%d\n", portno);

 sockfd = socket(AF_INET, SOCK_STREAM, 0);
 if (sockfd < 0)
 error("ERROR opening socket");
 bzero((char *) &serv_addr, sizeof(serv_addr));

 serv_addr.sin_family = AF_INET;
 serv_addr.sin_addr.s_addr = INADDR_ANY;
 serv_addr.sin_port = htons(portno);
 if (bind(sockfd, (struct sockaddr *) &serv_addr,
 sizeof(serv_addr)) < 0)
 error("ERROR on binding");
 listen(sockfd,5);
 clilen = sizeof(cli_addr);

Image 1: Sensor Module

 //--- infinite wait on a connection ---
 while (1) {
 printf("waiting for new client...\n");
 if ((newsockfd = accept(sockfd, (struct sockaddr *) &cli_addr,
(socklen_t*) &clilen)) < 0)
 error("ERROR on accept");
 printf("opened new communication with client\n");

 int doChars = 0;
 while (1) {
 //---- wait for a number from client ---
 if (doChars > 0)
 getChars(newsockfd);
 else
 data = getData(newsockfd);

 if (data == -2)
 break;
 else if (data == -3)
 {
 doChars = 1;
 data = 0;
 printf("Ready for characters! \n");
 continue; // goto next loop iteration
 }

 if (doChars == 1) {
 printf("Rec: %s\n", recievedChars);
 sendChars(newsockfd, myMessage);
 doChars = 0; // stop receiving chars
 continue; // goto next iteration
 }

 printf("got %d\n", data);
 printf("sending back %d\n", func(data));

 //--- send new data back ---
 sendData(newsockfd, func(data));

 }
 printf("Closing socket!");
 int n;
 if (n = close (newsockfd))
 error("Failed to close socket!");

 //--- if -2 sent by client, we can quit ---
 if (data == -2)
 break;
 }
 return 0;
}

Lab 4
The objective of this part of the lab is to define and plan out the use of a sensor and
actuator.

Part 1 – Sensor
The sensor I have chosen for this lab is Adafruit’s LSM303D 3-axis accelerometer with 3-
axis magnetometer. In addition to the accelerometer, there is a BMP180 pressure sensor and
a L3G4200D 3-axis gyroscope on the same board. Drawing 1 illustrates the device hookup
to the BBB.

Connection
The LSM303D device supports both I2C and SPI communication. I will be using I2C in this
lab because of previous experience with the protocol. The board includes the necessarily
level shifting and will operate with the 3.3V GPIO pins on the BBB.

The device operates off of 5v, and will be supplied by
the BBB’s own power supply. The device only
requires 110uA of current, which the BBB’s power
supply can easily handle. In combination with the
other sensors on the board, the board should draw
no more than 6.5mA, which is also allowable.
Drawing 2 shows the I2C timing for the device.

Drawing 2: I2C Timing

Drawing 1: Sensor Hookup

Part 2- Actuator
The actuator I have chosen for this lab is a 28BYJ-48 stepper
motor in combination with a ULN20003APG driver board.

Connection
The driver is not a step and direction driver. It is a seven
channel darlington sink driver which is designed to interface
a TTL chip with a high voltage (50V max) device such as a
motor. The BBB will communicate with the device via four
inputs (only four are needed for the stepper motor). The

driver datasheet states the voltage input range is from 2.8v to 24 typically, which the BBB
can supply. The current requirement is typically only 0.4mA per channel, which is allowable.

Image 2: Stepper and Driver

Drawing 3: Block Diagram

Image 3: Circuit & Mess

The motor is a 5Vdc device and it and the driver board will be powered from a bench-top
adjustable power supply. The motor should require about 400mA max, which can both be
supplied by the power supply and handled by the driver board (500mA max).

The motor is turned by a sequence of pulses to it by the driver, which is controlled by the
BBB. The motor contains four windings which must be powered in a specific sequence to
achieve clockwise or counter-clockwise direction.

Drawing 4: Stepper sequence

Conclusion
Researching how to use the stepper motor was one of the more challenging aspects of this
lab. In the end however, in addition to noticing libraries available online, the driver
architecture and pulse sequence for operation was determined. The choice of the actuator
and sensor was to allow the pairing of them in the future for projects such as an
automatically leveling table or balancing robot.

Jump to Index

Lab 5
Introduction
This lab is supposed to be for setting up the circuitry and programming the sensor and
actuator chosen and described in lab 4. The BeagleBone Black (BBB) single-board computer
is used to operate both sub-modules. For the sensor, I am using an MPU-6050
Accelerometer/Gyroscope. Originally I was using a different module, from Adafruit, but it
doesn’t appear to work anymore. Due to time constraints, the MPU-6050 was another
module I had on-hand and I didn’t have to wait for a new module from Adafruit.

Part 1 – Sensor
The sensor has a 3.3V regulator and level shifter, and is powered by the BBB’s 5V supply. It
is entirely controlled and powered by the BBB. In addition to power and ground, it utilizes
pins [P9, 19] and [P9, 20], which are the I2C2 SDA and SCL pins. I2C2 is the third I2C
interface supplied by the BBB and can be utilized either in C code, or by the bash terminal
using i2c-utils.

To make use of the GPIO pins of the BBB, the device tree overlays must be configured
correctly. The C library I am using needs ‘enable_uboot_cape_universal=1’ in the device tree
overlay config file. Luckily this is set by default on the Linux image I used.

Capture 1: Proof that the device tree overlay is configured

For the I2C communication to the
Accelerometer (MPU-6050), a standard Linux
library called “linux/i2c.h” was used. This
handles the i2C interface as a file and the use
is as simple as reading and writing characters
to a file after a ‘ioctl’ setup. As of this lab, the
C code is in a single file which collects and
prints X-axis accelerometer data over the
period of a few seconds. The code is included
in the appendix, and Capture 2 shows some
accelerometer data read from the module.

Capture 2: X axis data printed to the terminal

Part 2 – Actuator
The Actuator uses the pins [P8, 8], [P8, 10], [P8, 12], [P8, 14]. The stepper motor is
controlled by just four pins and a special sequence to rotate the motor forward or backward.
The motor control board itself is grounded to the BBB, but it’s power supply is a variable
power supply. The C library used is “iobb”, a great C library for manipulating the GPIO of
the BBB in addition to other functions like SPI. Capture 3 shows the terminal output of the
program. The code is documented and shown in the appendix. Image 4 shows the entire
prototype setup with the sensor and stepper motor.

Capture 3: Terminal Output

Image 4: Breadboarding prototype (ICs do nothing) Motor is shown on the left

Part 3 – Communication Protocol
The objective of this part of the lab is to outline a detailed communication protocol to
implement in the next lab. The protocol will command the actuator to rotate and will have
the ability to read sensor accelerometer values, gyroscope values, or temperature values.

The main program will be split into separate files for control of the actuator, of the the
sensor, and of the networking handling.

Actuator Interface
The stepper takes 4096 steps to do a full rotation, 64 steps is 5.625 degrees.

STEPPER SET SPEED – Sets the speed of the stepper in steps-per-millisecond

STEPPER CCW <STEPS> – Turn a number of steps counter-clockwise

STEPPER CW <STEPS> – Turn a number of steps clockwise

STEPPER BALANCE – Will attempt to maximize the accelerometer’s Z value (hold it
upright) Other commands to the actuator will disable this.

Response type:

OK – Means request was successfully executed

ERR – Means there was an error while trying to process command

Sensor Interface
ACCEL READ X – Returns the integer value for X-axis

ACCEL READ Y – Returns the integer value for Y-axis

ACCEL READ Z – Returns the integer value for Z-axis

TEMP READ – Returns the temperature value in celsius

GYRO READ X – Return the integer value for the gyroscope’s X-Axis

GYRO READ Y – Return the integer value for the gyroscope’s Y-Axis

GYRO READ Z – Return the integer value for the gyroscope’s Z-Axis

Responses start with the command minus the “READ”. Example responses:

ACCEL X 12280

ACCEL Y -12280

Conclusion
Initially it was greatly challenging to setup the I2C protocol. There was some configuration
required in Linux, and before I could go get to C code I have to first learn how to use the
Bash shell utilities for controlling the I2C bus. After I was able to initialize and read the
device using the terminal I started work on the C program. Eventually, with much aid from
a logic analyzer, the bugs were worked out. Initially the file was opened and closed in every
function, resulting in odd errors related to file manipulation and excess code required to do
file handling. This was later changed to have the main function be in charge of opening and
closing the file, simply passing it’s descriptor to the sub-functions.

In setting up the motor, a C library for manipulation of the IO had to be found and installed.
Initially I had difficulty setting up the compiler and linker to recognize the library.
Eventually the Eclipse IDE was set up to recognize the include, and after re-compiling the
library for ARM (since it had been compile on my computer), the library was function. The
device-tree-overlay settings were good by default and the code worked immediately.

Overall this was a great learning experience in both software and hardware. I learned how to
do basic step and direction control of a stepper motor without a wrapper library, and how to
use the GPIO of the BeagleBone Black. I learned how to use the MPU-6050 module as a
slave I2C device and also some of the fundamentals of the Linux I2C system.

Jump to Index

Appendix
C Program
#include <fcntl.h>
#include <string.h>
#include <stdlib.h>
#include <linux/i2c.h>
#include <linux/i2c-dev.h>
#include <stdint.h>
#include <stdio.h>
#include <sys/ioctl.h>
#include <unistd.h>
#include <iobb.h>

#define MOTOR_PORT 8 // Connector #
#define MOTOR_DELAY 500 // uS

const char motorPins[4] = {8, 10, 12, 14};
const char CCW[8] = {0x09,0x01,0x03,0x02,0x06,0x04,0x0c,0x08}; //CouterClockWise
const char CW[8]= {0x08,0x0c,0x04,0x06,0x02,0x03,0x01,0x09}; //ClockWise

int adapter_nr = 2; /* probably dynamically determined */

const char filename[20] = "/dev/i2c-2";

// Function to simplify writing GPIO
void setPin(char port, char pin, uint8_t state) {

if (state) // 0 = OFF, else = ON
pin_high(port, pin);

else
pin_low(port, pin);

}

// Function for easily controlling the 4 GPIO pins
int writeNibbleToGPIO(char data) {

// Write GPIO to the lower 4 bits of 'data'
setPin(MOTOR_PORT, motorPins[0], 0x01 & data);
usleep(MOTOR_DELAY);
setPin(MOTOR_PORT, motorPins[1], 0x02 & data);
usleep(MOTOR_DELAY);
setPin(MOTOR_PORT, motorPins[2], 0x04 & data);
usleep(MOTOR_DELAY);
setPin(MOTOR_PORT, motorPins[3], 0x08 & data);
usleep(MOTOR_DELAY);

return 0;
}

// Step the motor through one sequence. (8 steps)
int stepMotor8(int numSteps, int dir) {

if (numSteps <= 0)
return -1;

for (int x = 0; x < numSteps; x++) {

if (dir) {
// forward
for (int i = 0; i < 8; i++) {

writeNibbleToGPIO(CW[i]);
}

} else {
// backward
for (int i = 0; i < 8; i++) {

writeNibbleToGPIO(CCW[i]);
}

}
}

 // Turn off GPIO
 writeNibbleToGPIO(0x00);

return 0;
}

int initAccel(int fileDesc) {
// Register 0x6B - power management 1
// Register 3B - AccelX Upper
// Register 3C - AccelX Lower

// Disable IC sleep mode
char buf[2]; // Address + Data = 4
buf[0] = 0x6B;
buf[1] = 0x00; //0x43;
if (write(fileDesc, buf, 2) != 2) {

printf("Failed to write to device!\n");
}

buf[0] = 0x6B;
buf[1] = 0x00; //0x43;
if (write(fileDesc, buf, 2) != 2) {

printf("Failed to write to device!\n");
}

// Init the i2c device and print out some accel data
// set clock source
// set fullscale gyro range
// set fullscale accel range
// set sleep disabled (power reg 1)
return 0;

}

// Read two bytes, if sent the first address of an axis, it will return the axis
value.
int readAxis(int fileDescriptor, char regAddr){

int retrievedValue;
char readBytes[2];

// Write our register address
if (write(fileDescriptor, ®Addr, 1) != 1) {

printf("Failed to write to device!\n");
}

// Makes use of the rolling register pointer inside the accelerometer
read(fileDescriptor, readBytes, 2);
retrievedValue = (int16_t)((readBytes[1] << 8) | readBytes[0]);
return retrievedValue;

}

// Write a register over the I2C bus
int writeRegister(int fileDescriptor, char regAddr, char data) {

char readBytes[1];
char buf[2];
buf[0] = regAddr;
buf[1] = data;

// Write to register
if (write(fileDescriptor, buf, 2) != 1) {

printf("Failed to write to device!\n");
return -1;

}

return 0;
}

// Read a register from the I2C device
int readRegister(int fileDescriptor, char regAddr) {

int retrievedValue;
char readBytes[1];
char buf[1];
buf[0] = regAddr;

// Write our register address
if (write(fileDescriptor, buf, 1) != 1) {

printf("Failed to write to device!\n");
}

// Read value
read(fileDescriptor, readBytes, 1);
retrievedValue = (int8_t)(readBytes[0]);

return retrievedValue;
}

int main(int argc, char *argv[]) {
int file = open(filename, O_RDWR);

// Initialize GPIO and turn on a pin..
 iolib_init();
 iolib_setdir(8, 8, DigitalOut);
 iolib_setdir(8, 10, DigitalOut);
 iolib_setdir(8, 12, DigitalOut);
 iolib_setdir(8, 14, DigitalOut);

 // Step the stepper driver 180 degrees
 // with step8, it requires 512 to rotate 360 degrees
 printf("Moving motor...");
 stepMotor8(256, 0); // '0' direction means counter clockwise.

 printf("Done moving.\n");

// Specify device address for the file access
if (ioctl(file, I2C_SLAVE, 0x68) < 0) {

printf("Error setting address");
}

// Verify the file opened successfully.
if (file < 0) {

printf("Error opening file\n");
return -1;

} else {
printf("File Opened!\n");

}

// Initialize the accelerometer
printf("Initializing...\n");
initAccel(file);
printf("Initialized!\n");

// Print out 50 X values
int xVal;
printf("Reading X values: \n");
for (int x = 0; x < 50; x++) {

xVal = readAxis(file, 0x3C);
printf("%d\n", xVal);
usleep(100000);

}

close(file);
return 0; // Success!

}

Lab 6
Introduction
The object of lab 6 is to implement a client and server system for controlling the BeagleBone
Black and it’s peripherals. Both the sensor and actuator are available for use over the
network and the BBB provides a text-based command system for reading and writing data.

Part 1 – The Protocol
In this part of the lab, the actual protocol is outlined and written in a separate document to
distribute to other classmates so that they can also use my devices. This file includes all of
the technical information necessary to control and read from the BBB. The content of the
file is included in the appendix.

Essentially, this will serve as a reference for other people attempting to network with my
BBB. It will describe the command syntax and the allowable range of inputs. Additionally, it
describes the response format and how to read sensor data.

Part 2 – The Server
In this part of the lab, the sensor and actuator program for the BBB is modified to support
networking. The program originally created in lab 5 was split into separate files for the
motor, sensor, and networking functions.

The networking code was completely rewritten to be more robust and for the sake of learning
more about socket networking. The new system uses polling to detect when data is ready to
be received, when a new client connects, and when a client disconnects. When a data event
is discovered, the received data is moved into a dynamic hash table (a dictionary). The
command dictionary is used to dynamically process commands whenever the main program
is available. Commands consist of two parts; the client that sent the command, and the text
itself. Once a command is processed and replied to, it’s discarded and the memory for it is
freed.

Because the BBB is driving a stepper motor directly without a sub-module, it has to stop
what it is doing to send steps to the driver. By using code that won’t stop and wait for events
that may or may not happen, the program is free to continue running the motor even while
being able to handle network clients.

Captures 4, 5, and 6 show the client and server communicating with each other. In addition
to the raspberry pi connecting to the BBB, a linux PC is telnet’d into the BBB as well. Both
the RPi and the PC can submit commands to the server at the same time, and both
commands will be dealt with. If you look closely you can spot a “STEPPER BALANCE”
command that the raspberry pi terminal never sent, but was in fact sent from the Linux PC.

Capture 6: Server Execution Capture 4: Client Execution

Capture 5: Telnet session from linux PC

Part 3 – The Client
In this part of the lab, a program is created to allow the Raspberry Pi (RPi) to act as a client
of the BeagleBone Black (BBB). The code was re-written similarly to the server; it uses
standard socket networking functions and paradigms.

Part 4 – Test and
Integration
In this part of the lab, the code
from part 3 (the client) is used to
test the protocol and connection
methods. Essentially, every
command is fired at the server
and the response is read back
and printed.

Shown in capture 8 is the
server’s terminal output while
the client is communicating with
it. Notice there being two clients,
the RPi is the ‘.144’ address and
the Linux PC is the ‘.122’
address.

The server will run for as many
seconds are entered in the
command line, in this case it
runs for ‘500’ seconds. By
default, it will shut down after 20
seconds.

Capture 8: Server output while client runs tests

Capture 7: RPi Client

Conclusion
Overall, the socket programming was highly educational and will certainly provide great
utility in the future. It also leaves plenty of room for adding features in the existing code, it
would be possible run more than one actuator and talk to more than one sensor. On
average, the CPU usage on the BBB remains at less than 4%.

For dedicated driving scenarios like this one, the BBB’s CPU has two sub-cores called
Programmable Real-time Units (PRUs). These can be programmed and used similarly to any
high performance microcontroller, and would make ideal sub-cores for tasks like running a
stepper motor. Unfortunately, due to time (and energy) constraints, I did not implement a
method of programming them for my uses. There are libraries and tutorials available for
them however, and for more complicated programs they would be the perfect solution.

In conclusion, after this lab I have the source code and the skills to do basic socket
networking with an ARM computer, in addition to controlling an actuator and reading from
a sensor. I’ve also learned a lot about the C programming language and the Eclipse IDE
along the way. I should now be able to communicate with other kinds of motor drivers, other
I2C devices, and other networked computers.

Jump to Index

Appendix
Protocol
Name: Zachary Whitlock
Email: zachary.whitlock@oit.edu
BBB IP Address: 192.168.1.148

Actuator Interface
Command Format
STEPPER SET SPEED < -2000 to +2000, 0 to stop, unit = steps/sec>
STEPPER CCW <steps, 4096 steps per rotation>
STEPPER CW <steps, 4096 steps per rotation>
STEPPER BALANCE
Note: Spaces are required

Example commands from client
STEPPER SET SPEED 1000 -- Tells the stepper motor to rotate clockwise at

1000 steps per second.

STEPPER CCW 2048 -- Turn 180 degrees counter-clockwise, goes as
fast as possible.

STEPPER CW 2048 -- Turn 180 degrees clockwise, goes as fast as
possible.

STEPPER BALANCE -- Stepper will attempt to balance the
accelerometer. Command is a toggle.

Example response from the server
OK – Will always reply “OK” after done moving the

stepper, or after a successful stepper command.
Sensor Interface
Command Format
<ACCEL/TEMP/GYRO> READ <X/Y/Z – do not specify axis for TEMP>
Note: Spaces are required

Example commands from client
ACCEL READ X -- Reads the voltage on ADC channel 0
GYRO READ X -- Reads the X axis gyroscope.
TEMP READ -- Reads the temperature in Celcius * 100

Example response from the server
ACCEL X 12345 -- Number ±32768 = ±2g, ‘12345’ = 0.753g

GYRO Z -542 -- Number ±32768 = ±250°/s, ‘-542’ = -4.137°/s

TEMP 2790 -- Equivalent to 27.90C degrees.
Messages between the Client and Server
CLOSE -- Closes the TCP/IP socket. This commend should be issued by the

client. The server will respond with CLOSE.

Code
Because there are over 900 lines of code and 10 different files with conflicting names, the
code can be found in a gitlab repository here: https://gitlab.com/CaptainGector/bbb_server,
and here: https://gitlab.com/CaptainGector/rpi_client.

https://gitlab.com/CaptainGector/rpi_client
https://gitlab.com/CaptainGector/bbb_server

Lab 7
Introduction
The objective of this lab is to design a GUI (Graphic User Interface) using a piece of software
called Glade. The GUI will be for sending commands to the BeagleBone Black from the
Raspberry Pi and it’s touch screen.

Part 1 – GUI Design
The first part of this lab is the GUI design itself. The user interface of the program was
designed in a programm called Glade, which allows you to describe GTK-3 applications
easily without spelling out everything in C code. The goal of the GUI is to support 12
sensors and 12 actuators, and callbacks were used to hook C code into the GUI’s button
system. Capture 9 shows the GUI in it’s mostly finished form, for lab 7. It will undergo
revisions to connect to more than my BeagleBone Black, and may include additional
functionality.

Capture 9: The GUI as Created by Glade

Part 2 – Testing GUI on RPi
The second part of this lab is to write a program that controls the GUI and handles user
input like button presses. The code was actually written on my Linux computer and a post-
build command was used to run a script which copied the development files to the RPi. On
the RPi, I used a Makefile to compile and run the GUI program. This worked quite well and
was easier to set up than cross-compiling GTK-3 and it’s associated libraries, which I also
attempted.

Image 5 shows the GUI running on the Raspberry Pi after the code was compiled and
executed. The text in the terminal behind the GUI reads “Sensor button clicked”, which
indicates that one of the 12 sensor buttons was clicked on.

Image 5: The GUI running on the Raspberry Pi

Capture 10: Actuator button panel

Part 3 – GUI Interfacing to client.c
The purpose of this part of the lab is to allow the GUI to utilize the connectivity of the
client.c application previously written for the RPi.

The value field is read upon an actuator button press, such as ‘STEPPER CCW <VAL>’. The
‘<VAL>’ text will replaced with whatever is in the “Value” entry box, and then the command
sent to the BBB. Setting commands is as simple as setting the label of the button.

Capture 11: Actuator button panel

Capture 12: Proof the GUI works

As of right now, the IP address for my BBB is hard-coded, and so the ‘IP Address’ entry box
has no purpose. The ‘Custom Command’ entry box allows you to send whatever command
you want to the server, however. The ‘Send’ button is only for the custom command feature,
the buttons automatically send commands.

Commands and replies are relayed/proxied through the client program previously written
for the RPi. The client program was modified to read message queues, which are used to
pass information between the GUI and client which are both running on the RPi. Replies
from the BBB are relayed back to the GUI which will display them in the label to the left of
‘Response’, which defaults to ‘...’.

Captures 13 and 14 show an example of the backend in use. Capture 13 is the output from
the GUI program, and Capture 14 is the output of the BBB’s server. Capture 12 (above)
shows the GUI having received data from the trail of programs starting at the BBB.

Capture 14: Capture of the BBB server during
connection

Capture 13: Capture of the GUI terminal
during connection

Conclusion
In this lab I learned how to use GTK-3 to make some very nice graphical interfaces to
programs written in different languages. Glade can be used for more than just C, and is
commonly used with Python. Additionally, I learned how the POSIX message queues worked
and how to compile applications using them on both ARM and x86 processors. I also
learned how to set up a Raspberry Pi with an LCD with a custom resolution and a
capacitive touchscreen. This was a highly educational lab with a lot of relevant experience
for future projects or employments.

Jump to Index

Appendix
Code
Because there are over 900 lines of code and 10 different files with conflicting names, the
code can be found in a gitlab repository here: https://gitlab.com/CaptainGector/bbb_server,
and here: https://gitlab.com/CaptainGector/rpi_client, and here:

https://gitlab.com/CaptainGector/rpi_gui.

It should be noted that one would have to go back through commit history to view the
changes between labs, as there isn’t much distinguishing the code otherwise.

I’ve included the GUI code for this lab since it’s not as large as the other programs

Code – main.c
/*
 * main.c
 *
 * Created on: Nov 24, 2020
 * Author: Zachary Whitlock
 *
 * Creates a GTK3 GUI from a glade-generated file, and attaches
 * handlers.
 *
 */
#include <stdint.h>
#include <stdio.h>
#include <gtk/gtk.h>

#include "msgQueue.h"

// Global items of interest
GtkWidget *lbl_response;
GtkEntry *entry_command;
GtkEntry *entry_value;

GtkTextBuffer *xCommand;

https://gitlab.com/CaptainGector/rpi_gui
https://gitlab.com/CaptainGector/rpi_client
https://gitlab.com/CaptainGector/bbb_server

// Fires when an actuator button is pressed
void Actuator_clicked_cb(GtkButton *button, gpointer user_data) {

printf("Actuator button clicked\n");
char msgBuf[MAX_MSG_SIZE];
char msgBuf2[MAX_MSG_SIZE];
char *subStr;

const gchar *label = gtk_button_get_label(button);
strcpy(msgBuf, label);
subStr = strstr(msgBuf, "<VAL>");
if (subStr != NULL) {

// Strips the "<VAL>" from the string and places the result in msgbuf2
strncpy(msgBuf2, msgBuf, subStr-msgBuf);
msgBuf2[subStr-msgBuf] = 0; // null terminator

// Adds the content of the value entry into the string
const gchar *entry_text;
guint16 entry_size;
entry_text = gtk_entry_get_text(entry_value);
entry_size = gtk_entry_get_text_length(entry_value);
sprintf(msgBuf, "%s%s", msgBuf2, entry_text);

printf("Buffer: %s\n", msgBuf);
}

// Send the complete command
if (sendToOther(msgBuf, MAX_MSG_SIZE) != 0) {

printf("Failed to pass command along!");
}

}

// Fires when a sensor button is pressed
void Sensor_clicked_cb(GtkButton *button, gpointer user_data) {

printf("Sensor button clicked\n");
char msgBuf[MAX_MSG_SIZE];

const gchar *label = gtk_button_get_label(button);
strcpy(msgBuf, label);
if (sendToOther(msgBuf, MAX_MSG_SIZE) != 0) {

printf("Failed to pass command along!");
}

}

// Send button was pressed
void Send_clicked_cb(GtkButton *button, gpointer user_data) {

printf("Send button clicked\n");
// Take the contents of the custom command input
// and send it to the message queue service
char msgBuf[MAX_MSG_SIZE] = {};

const gchar *entry_text;
guint16 entry_size;
entry_text = gtk_entry_get_text(entry_command);
entry_size = gtk_entry_get_text_length(entry_command);

strcpy(msgBuf, entry_text);

printf("Got text of size %d: %s\n", entry_size, msgBuf);
if (sendToOther(msgBuf, MAX_MSG_SIZE) != 0) {

printf("Failed to pass command along!");
}

}

// Runs repeatedly on a timer
int timer_handler() {

char msgBuf[MAX_MSG_SIZE] = {};
char responseBuf[MAX_MSG_SIZE] = {};

// Show any data we got in the queue
if (readFromOther(msgBuf, MAX_MSG_SIZE) > 0) {

printf("Received: %s\n", msgBuf);
sprintf(responseBuf, "'%s'", msgBuf);
gtk_label_set_text(GTK_LABEL(lbl_response), responseBuf); // update

label
return 1;

} else {
memset(msgBuf, 0, MAX_MSG_SIZE);

}

return 1; // returning 0 will destroy us.
}

int main(int argc, char *argv[]) {
// Setup message queuing
if (createMsgQueues(0) < 0) {

printf("Error creating message queue!\n");
}

GtkBuilder *builder;
GtkWidget *window;
GError *error = NULL;

gtk_init(&argc, &argv);

builder = gtk_builder_new();

// try and load file for GUI
if (!gtk_builder_add_from_file(builder, "assets/main.glade", &error)){

g_warning("%s", error->message);
g_free(error);
return(1);

}

// get widgets/objects
window = GTK_WIDGET(gtk_builder_get_object(builder, "myWindow"));
lbl_response = GTK_WIDGET(gtk_builder_get_object(builder, "lbl_response"));
entry_command = GTK_ENTRY(gtk_builder_get_object(builder,

"custom_command"));
entry_value = GTK_ENTRY(gtk_builder_get_object(builder,

"enter_value_field"));

xCommand = GTK_TEXT_BUFFER(gtk_builder_get_object(builder, "readT_cmd"));

// Hookup our signals
gtk_builder_connect_signals(builder, NULL);

GtkTextBuffer test;
gtk_builder_connect_signals(builder, &test);

// Destroy the builder, now that we're done with it.
g_object_unref(G_OBJECT(builder));

// Make quitting the GUI also stop the program.
g_signal_connect(window, "destroy", G_CALLBACK(gtk_main_quit), NULL);

// Number is in milliseconds
g_timeout_add(50, (GSourceFunc)timer_handler, NULL);

gtk_widget_show(window);

gtk_main();

closeQueues();

return 0;
}

Code – msgQueue.h
/*
 * msgQueue.h
 *
 * Created on: Nov 24, 2020
 * Author: Zachary Whitlock
 */

#ifndef SRC_MSGQUEUE_H_
#define SRC_MSGQUEUE_H_

#include <fcntl.h>
#include <sys/stat.h>
#include <stdio.h>
#include <mqueue.h>
#include <errno.h>

#define OTHER_MSG_FILE "/otherMsgQueue"
#define CLIENT_MSG_FILE "/clientMsgQueue"

#define QUEUE_PERMISSIONS 0660
#define MAX_MESSAGES 10
#define MAX_MSG_SIZE 32
#define MSG_BUFFER_SIZE MAX_MSG_SIZE + 10

int createMsgQueues(int client);
int sendToOther(const char *msgBuf, size_t bufSize);
int readFromOther(char *msgBuf, size_t bufSize);
int closeQueues();

mqd_t other_server;
mqd_t client_server; // queue descriptors

#endif /* SRC_MSGQUEUE_H_ */

code – msgQueue.c
/*
 * msgQueue.c
 *
 * Created on: Nov 24, 2020
 * Author: Zachary Whitlock
 *
 * Writes to the GUI message queue and reads from the client message queue
 */

#include "msgQueue.h"

// Open the message queue
// Make the receive functionality non-blocking.
// Set 'client' to anything except 0 to make this the client.
// Returns -1 if error, anything >= 0 is good.
int createMsgQueues(int client) {
 struct mq_attr attr;

 attr.mq_flags = 0;
 attr.mq_maxmsg = MAX_MESSAGES;
 attr.mq_msgsize = MAX_MSG_SIZE;
 attr.mq_curmsgs = 0;

 if ((client_server = mq_open (CLIENT_MSG_FILE, O_RDWR | O_CREAT | O_NONBLOCK,
QUEUE_PERMISSIONS, &attr)) == -1) {
 perror("Error on opening client file: ");
 return -1;
 }

 if ((other_server = mq_open (OTHER_MSG_FILE, O_RDWR | O_CREAT | O_NONBLOCK,
QUEUE_PERMISSIONS, &attr)) == -1) {
 perror("Error on opening GUI file:");
 return -1;
 }

 if (client != 0){
 mqd_t tempHolder = client_server;
 client_server = other_server;
 other_server = tempHolder;
 printf("Initialized queues. Sending to '%s' and receiving from '%s'\n",
 OTHER_MSG_FILE,

CLIENT_MSG_FILE);
 } else {
 printf("Initialized queues. Sending to '%s' and receiving from '%s'\n",
 CLIENT_MSG_FILE,

OTHER_MSG_FILE);
 }

 return 0;

}

// Send a message to client program
// Returns -1 if error, anything >= 0 is good.
int sendToOther(const char *msgBuf, size_t bufSize) {

if (mq_send(client_server, msgBuf, bufSize, 0) < 0) {
perror("Error sending message.");
return -1;

}
return 0;

}

// Close a message queue
// Returns -1 if error, anything >= 0 is good.
// TODO
int closeQueues() {

mq_close(other_server);
mq_close(client_server);
return 0;

}

// Attempt to receive a message from the queue
// Returns -1 if error, anything >= 0 is good.
int readFromOther(char *msgBuf, size_t bufSize) {

ssize_t numRecieved = mq_receive(other_server, msgBuf, bufSize, NULL);
if (numRecieved < 0 && errno != EAGAIN) {

perror("Error receiving! Reason");
return -1;

}
return (int)numRecieved;

}

Lab 8
Introduction
The objective of this lab is to connect to another student’s BBB and facilitate a connection to
my BBB. Due to current circumstances (COVID-19), a local-network connection was not
used this term. Instead, I voluntarily hosted a service on a public server to allow students to
forward traffic through the internet to their local devices.

Part 1
Modifications
To connect to another server via the GUI designed and written in previous lab, some
modifications were required. My client application was slightly modified to connect to a
specified IP and port rather than something hard-coded. Additionally, a new tab was added
to the GUI for controlling my classmate’s BBB.

Setting up a Reverse SSH Tunnel
On my Virtual Private Server (VPS), I set up a user called “ee407” for my classmates. In the
SSH config file, I added the following lines:

Temporarily allow users to login with password
Match User ee407
 PasswordAuthentication yes
This enables password authentication for only the EE407 user and allows other users to
connect. I also enabled the “AllowTcpForwarding” and “GatewayPorts” settings in the SSH
config file in the global sense.

Students could forward traffic from my server to their BBB by running the following
command from their BBB:

ssh -R 5000:localhost:51717 ee407@gectorsbox.net

The first port (<first>:localhost:<second>) is the port used on the remote server, and the
second port is the port used by the program controlling the BBB locally. To connect to the
tunnel created by that example, you connect telnet to that tunnel:

telnet gectorsbox.net 5000

The raspberry pi connects to the same place, although usually replacing gectorsbox.net with
it’s IP address.

Connecting to Another BBB Server
Figure 3 shows my RPi’s screen and output after sending “SENSOR ON” to Truong’s BBB.

Figure 3: My GUI showing the response from the other student's BBB

Part 2
In this part of the lab, my communication was given to another student so that they might
connect to my BBB.

Figure 5: Response from my BBB on Truong's GUI, "TEMP 2953"

Figure 4: Truong's Output after sending a command to my stepper motor ('OK')

Figures 4 & 5 are the proof that the other student, James Truong, was able to communicate
with my server.

This video shows my stepper motor turning halfway around from Truong’s command
specifying 2048/4096 steps:

https://www.youtube.com/watch?v=EP_8lok31Vw

Conclusion
Truong and I spent quite a bit of time on getting his BBB server to receive messages from
computers over the internet. In the end, the solution was primarily that he was running the
wrong command on his BBB to create the reverse SSH tunnel. However, he also added code
to handle commands with better error handling and debugging so we could tell what was
going on. He also had to modify his client code to be able to talk to my BBB. In modifying
my client code and GUI, I opted to allow a connection to only 1 BBB at a time, even though
the GUI was originally designed to talk with multiple servers. For personal use, the client
code could be modified to create new connections when asked to by the GUI, and I could
create a inter-program protocol for setting up network connections based on commands from
the GUI.

In this project, I’ve learned a ton about C programming, typical Linux and embedded
systems conventions and practices, and basic circuit control with a Single-Board-Computer
like the Raspberry Pi or BeagleBone Black. I’ve gotten to learn how to configure and use
internal peripherals like I2C and how to make use of onboard sensors like the CPU
temperature.

This is the final lab of the term. I chose not to do part 3 which was to connect with a second
student, for extra credit. In this lab I learned a lot since I also set up the reverse-ssh tunnel
for the rest of the students. I learned how to connect to a remote device over the internet in
a secure fashion and a little bit on how SSH works. Other students in the class were also
able to use their projects in a more real-world way because of the internet tunnel, we could
work almost as if we were on the same Local Area Network.

In addition to the proof of remote control, I recorded a video of the balance feature of my
program. https://www.youtube.com/watch?v=fa7_deQBjU4

Jump to Index

Appendix
All of the code for this lab and the rest of the project is available on gitlab.

https://gitlab.com/CaptainGector/bbb_server

https://gitlab.com/CaptainGector/bbb_server
https://www.youtube.com/watch?v=fa7_deQBjU4
https://www.youtube.com/watch?v=EP_8lok31Vw

https://gitlab.com/CaptainGector/rpi_gui

https://gitlab.com/CaptainGector/rpi_client

https://gitlab.com/CaptainGector/rpi_client
https://gitlab.com/CaptainGector/rpi_gui

	Lab 1
	Introduction
	Part 1 – Setting up Ubuntu Laptop
	Part 2 – Checking Linux Distributions
	Part 3 – Basic Linux Commands
	Static IPs

	Conclusion

	Lab 2
	Introduction & Objective
	Part 1 – Installing Eclipse & Cross Compilation
	Part 2 – Eclipse Remote Systems
	Part 3 – Interacting with GPIO
	Conclusion
	Appendix – Code

	Lab 3
	Introduction
	Part 1
	Part 2 – Dissecting the Code
	Part 3 – Modifying the Code
	Conclusion
	Appendix – Code
	Client.C
	Server.c

	Lab 4
	Part 1 – Sensor
	Connection

	Part 2- Actuator
	Connection

	Conclusion

	Lab 5
	Introduction
	Part 1 – Sensor
	Part 2 – Actuator
	Part 3 – Communication Protocol
	Actuator Interface
	Sensor Interface

	Conclusion
	Appendix
	C Program

	Lab 6
	Introduction
	Part 1 – The Protocol
	Part 2 – The Server
	Part 3 – The Client
	Part 4 – Test and Integration
	Conclusion
	Appendix
	Protocol
	Code

	Lab 7
	Introduction
	Part 1 – GUI Design
	Part 2 – Testing GUI on RPi
	Part 3 – GUI Interfacing to client.c
	Conclusion
	Appendix
	Code
	Code – main.c
	Code – msgQueue.h
	code – msgQueue.c

	Lab 8
	Introduction
	Part 1
	Modifications
	Setting up a Reverse SSH Tunnel
	Connecting to Another BBB Server

	Part 2
	Conclusion
	Appendix

