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Abstract—A GNU Octave/Matlab function for the purpose of
detecting percussion peaks in Intercranial Pressure signals is
designed, developed, and tested in this report. The algorithm
uses IIR filters to remove quantization noise and to lowpass
filter the signal to it’s first fundamental frequency. The algorithm
returned lengths of indexes accurate to <3% for stable, nearly
time-invariant signals, and lengths of indexes accurate to <20%
for less stable, very time-variant signals.

Index Terms—Beat Detection, Percussion Peaks, Matlab, Dig-
ital Signal Processing

I. INTRODUCTION

The measurement and analysis of Intracranial Pressure
(ICP) data pressure data is often done with simplified al-
gorithms such as mean value and spectral power. The first
step is taken in this report to providing another method of
analysis by looking at the beat-by-beat changes in the base
signal. In this way, differences in aspects such as the distance
between (in Y and X) a percussion peak and a dichrotic peak
can be measured and characterized with ease. Fig.1 shows
the percussion peaks on a raw ICP signal, and Fig.2 shows
an example of an analyzed signal with it’s percussion peaks
labeled. Fig.2 was labeled by a professional or by a better
algorithm, the data set was provided.

The objective of this report is to create a Matlab/GNU
Octave function designed and developed for the purpose of
finding the percussion peaks of ICP data. The function is
characterized by the following: fi = PressureDetect(xi, fs, pf);

o xi = Input signal

o fs = Signal sample rate (Hz). Default = 125Hz

o pf = Plot flag: O=none (default), 1=screen

o fi = Percussion peak (P1) index, samples
To use the function, you feed it an input pressure signal, and
optionally specify the sample rate and print flag. If the print
flag is set, the function will plot a segment of the data for
observation and analysis. The function will analyze the input
data and return a set of indexes representing the X coordinates
of the peaks, as well as corresponding Y values.

II. METHODOLOGY
A. The Dataset

The dataset used for testing and validation was obtained
from the class resources and is comprised of approximately
1 hour or 3600 seconds of ICP signals. The signals ‘icpl’
and ‘icp2’ are provided in the ICP.mat file. Also included
in the ICP.mat file are the indexes of pre-recorded peaks
already located. Each signal is largely a clean signal with slight
variations and a section of artifacts and signal distortion. Both
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Fig. 1. Percussion peaks on a ICP signal. This is the ’icpl’ dataset. In
the beginning of this dataset there is no typical ICP pattern. As shown, the
pressure has a peak before the tall percussion peak, instead of after it.

signals share a sampling frequency of 125Hz. The signal ‘icp2’
is generally cleaner and yields more reliable results with this
algorithm.

B. Algorithm Overview

There were a multitude of steps involved in choosing
an algorithm. The end result is similar to how M. Aboy’s
algorithm works [1]. In designing the algorithm, the signal(s)
were examined in a spectogram in order to see what the
frequency components would do over time. From there, I
settled on a four-step approach. I determined that the first
fundamental frequency did not move around significantly, and
with some testing I found that low-passing the signals to
only include the first major frequency component yielded
consistent results. The peaks of the low-passed signal are
found with a find-next-max loop and recorded. From there,
each lowpass-peak is examined and an area of the original
signal is searched centering around the lowpass-peak. The
area searched is slightly less than the period of the low-pass
filter’s cutoff frequency, which makes it impossible for a single
lowpass-peak to find multiple percussion peaks in the ICP data.
The basic design elements are laid out in Fig.3.

C. Quantization Lowpass

The first step of the journey is to remove the quantization
noise created by sampling the signal in hardware. The highest
significant frequency is manually determined and a lowpass
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Fig. 2. Professionally labeled Percussion peaks on a raw ICP signal. This
graph represents the “icpl’ dataset plotted against the '"dDT1’ peak set.
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Fig. 3. Basic flow diagram of the PressureDetect function

filter is implemented with a 5th order Butterworth filter. For
the ICP signals, the cuttoff frequency is 15Hz, but 10Hz can
be used for the ABP signals. Fig.4 Shows the response of the
quantization filter used.

D. Fundamental Lowpass

The second lowpass filter used is a 10th order Butterworth
filter. The higher order helps to ensure a clean near-sinusoid
without secondary peaks which would potentially interfere
with the algorithm. Once a near-sinusoid signal is created,

50 - T T T 1
0 . 1
@ 50 TT— .
@ -100 — 1
] -
£ 150 I
= -200 \
-250 |- 4
300 L L L ! ! |
0 10 20 30 40 50 60
Frequency (Hz)
0 < T T T T
__-100 S 1
2
8
o AN
% -200 ~ 1
g N
S .
2 -300 - ~ |
8 -
g —
& 400 T 1
—
500 . . . . .
0 10 20 30 40 50 60

Frequency (Hz)

Fig. 4. Frequency response of the quantization filter used

the signal is looped over and the peaks are located. The peak-
detection algorithm for the simplified signal works by looking
forward from a previously located peak. The algorithm starts
about half a period forward of the last peak, ideally starting in
an inverse peak or valley. It then scans forward for roughly one
period of the signal and locates the highest point in this range.
Fig.5 shows this search zone. Fig.6 shows the frequency and
phase response of the 10th-order Butterworth filter. It’s evident
that this second filter has a much sharper response.
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Fig. 5. Search algorithm for the peaks of the low-passed signal applied to
the ‘abpl’ signal provided for the project. The orange signal is low-passed
and the blue is the original signal. Red and blue points represent the peaks
the algorithm has found
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Fig. 6. Frequency and phase response of the 10th-order Butterworth filter
used to lowpass the signal to the first significant frequency.

E. Percussion Peak Search

To find the percussion peaks themselves, the peaks of the
low-passed signal are used as reference points. A period of
time is examined on each side of the low-passed peaks, but



instead of the lowpass signal being examined for maximums
the signal from the first filter is used. As such, the peaks are
located in the quantization-error-removed signal and recorded.
The period of time searched is equal to the period of a 2Hz
signal. 2Hz was chosen because it’s the average period of
the first significant frequency for the icp signals. By using
the peaks of the low-passed signal we have a resilient search
algorithm that works over a range of variations in the original
signal. Fig.7 shows the search range of the algorithm as it goes
over the lowpass peaks.
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Fig. 7. Search range and reference points for locating the percussion peaks
in “icp2”

III. RESULTS

A. Expected Results

A high-performance algorithm would accurately recreate co-
ordinates labeled by an expert or another algorithm. Therefore,
the expected results of this algorithm would be to closely
recreate the coordinates given by the class Professor. The most
complete datasets for the peak values seem to be “dDT1” and
“dDT2” for “icpl” and “icp2” respectably. TABLE1 shows
all of the available indexes for comparison. I'm making an
assumption that the smaller lengths mean higher accuracy and
may imply a human indexed them manually.

TABLE I
PEAK INDEXES AVAILABLE

Name | Length (N samples)
dl 8635
d2 5249

dDT]1 8350

dDT2 5241

dIM1 1431

dJM2 869

dTT1 154

dTT2 87

B. “ICP1” Results

It is difficult to directly compare the index arrays since the
function returns a signal which has been filtered and no longer
is one-to-one with the original signal. Therefore, I'm visually
comparing the results of the function as well as comparing
the lengths of the index array returned by the function and the
length of the given index arrays.
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Fig. 8. Comparison of the dTT1 index array versus the result from the
function. the dTTx arrays are the shortest and presumably the most accurate.
It can be seen that the same general shape is seen for both graphs, but the
function does differ in a lot of ways.
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Fig. 9. Comparison of the d1 indexes with the result from the function.

As seen in Fig.8 the results aren’t exactly the same as the
given index arrays. However, the results of the PressureDetect
function closely follows the given index arrays as is evident
in Fig.9. TABLE2 shows the error in the array length between
the function results and the relevant index array. The cleaner
signal “icp2” yielded better error percentages by far. Only the
dTT2 error was greater than 1% for the second ICP signal
being passed through the function.



TABLE 11
PEAK INDEX COMPARISONS
Name | Length (N samples) | Function Result (N sampels) | % Error
dl 8635 7251 19.09%
d2 5249 5266 0.32%
dDT1 8350 7242 15.30%
dDT2 5241 5270 0.55%
dIM1 1431 1228 16.53%
dIM2 869 867 0.23%
dTT1 154 135 14.07%
dTT2 87 85 2.35%
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Fig. 10. Plot of percussion peaks against the lowpass’d signal

Fig.10 shows a segment of the output data from the function
as well as the lowpass filtered signal used to calculate the
peaks.

IV. DISCUSSION

We can gather from the Results that this is a low per-
formance algorithm. In Fig.10 it’s even visible that one of
the peaks is mis-labeled and the previous peak was double
indexed. Additionally, the algorithm did not produce very
accurate results with the more unreliable “icpl” signal as
evidenced by the high error percentages in TABLE2. Even
though this isn’t the most accurate algorithm, it is significant
that a simple algorithm can detect percussion peaks of an ICP
signal. This could be used to detect changes over time in the
signal, as well as measure aspects such as the amplitude and
period variance of the peaks.

This double-indexing issue can be resolved by forward-biasing
the search algorithm to look forward from a low-pass peak
instead of around it. This was attempted after the report
was written and the dl error was improved to be 3.277%.
Further tuning of the function in terms of frequency cuttoff
points yielded an even greater improvement to 0.28%. It is
probable then that this basic algorithm as an idea has more
potential than was realized in this report. Ideally, the function
would automatically detect the lowest significant frequency
and potentially track it over time to provide the most accurate

low-pass peaks possible. It also appeared that adding in some
component of the second significant frequency had positive
effects on the accuracy.

For future research, and besides further improving this algo-
rithm, it would be interesting to do what [1] suggests and
attempt to further analyze ICP signals with the help of blood
pressure signals of the same timeframe.

V. CONCLUSION

In conclusion, a semi-robust algorithm was designed and
implemented in the form of a GNU Octave/Matlab function.
This function, PressureDetect, prints out a section of the input
signal for analysis if desired, and always returns an array of
indexes representing the percussion peaks of the input. For
clean signals, the function can be expected to be accurate to
less than 3%, and for distorted and extremely time-varient
signals it can be expected to be accurate to 20%.
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