
Table of Contents
Lab 1..3

Introduction...3
Breadboarding...3
Oscilloscope Captures – Breadboard..3
Oscilloscope Captures – Uno..4
Functions Descriptions..5
Conclusion / Summary..5
Extra Credit (Done on Linux)...6

Explanations / Summaries..6
Appendix – Blink Code...7

Lab 2..8
Introduction...8
Part 1a – RS232 Serial Transmit...8
Part 1b – RS232 Serial Transmit and Receive..9
Part 2 – I2C Port Expander...11
Part 3 – SPI Port Expander..12

Lab 3..13
Part 1..13

Function Descriptions...14
Part 2..15

Bit Operations...17
Part 3..19

Extra Credit...20
Conclusion...21
Appendix...21

DigitalClock.ino..21
Real_Time_Clock.ino...24

Lab 4..27
Part 1 – Interrupt Speed Test...27
Part 2 – Measuring Pulse Duration..29
Conclusion...30
Appendix – Part 1..31

Lab 5..33
Introduction...33
Part 1..33
Part 2..35
Part 3..36
Conclusion...37
Code Appendix..37

Part 1a...37
Part 1b...37
Part 2...39
Part 3...40

Lab 6..42
Introduction...42
Part 1..42

Part 2..43
Part 3 – Temperature Measurement...46
Conclusion & Discussion..48
Appendix...48

Code – Part 1..48
Code – Part 2..49
Code – Part 3..56

Lab 7..59
Introduction...59
Part 1..59

Code Explanation..59
Captures..60
Decoding...61

Part 2..62
Code Explanation..62
Captures..62
Decoding...63

Conclusion...63
Appendix...64

Code – Part 1..64
Code – Part 2..66

Lab 8..69
Introduction...69
Part 1..69

Setup...69
Part 2..71

Firmware Update..71
Part 3..72

Website Connection..72
Code Explanation..72

Conclusion...74
Appendix...74

Lab 1
Introduction
Objective: To build and test an ATMega328P based microcontroller on a breadboard.
Basically, build an Arduino Uno, on a breadboard.

Breadboarding

Oscilloscope Captures – Breadboard
(Look at “C1 Frequency” under ‘Measurements’ on the right)

Oscilloscope Captures – Uno
(Look at “C1 Frequency” under ‘Measurements’ on the right)

Functions Descriptions
pinMode: Will set the specified pin as an input or output. Can also enable input pullup.

digitalWrite: Writes the specified digital pin to either 0V or 5V. Pin should first be
configured with `pinMode`

delay: Will pause the program execution for the amount of time specified, in milliseconds.
Useful in the blink sketch for changing the frequency.

Conclusion / Summary
In this lab I learned how to assemble and program an ATMega328p (the brain of the arduino
Uno MCU) on a breadboard. I wasn’t sure I had ATMega328p that had a bootloader already
loaded on them, so at some point during the process I also burned the arduino bootloader
using a bus pirate. I also discovered I had forgetten to tie my power rails together on the
breadboard. Eventually, I got the Arduino to program with the FTDI USB adapter and, still
having to press the reset button, can upload Arduino sketches to the MCU.

The Arduino maintains the code because it’s flash memory gets programmed by the FTDI
USB adapter. AVR has a different memory structure than other MCUs, like ARM based ones.

Extra Credit (Done on Linux)

Explanations / Summaries
Bitwise Operators: In C, bitwise operators contrast inputs bit-by-bit, the output being the
literal logical comparison (01 & 01 = 01).
Macros: Macros in C are like bits of code that can be named and have their value changed,
differently than how regular variables work.
Includes: Included files will essentially replace their ‘#include’ code in your main program
with the of the code in the header file.
The ‘avr-gcc’ file will compile your arduino script with the correct parameters associated
with it (Clock speed, MCU, etc). The ‘-o’ specifies the output file, the ‘-c’ specifies to not run
the linker, and ‘-mmcu’ is to specify the AVR instruction set or MCU type. In this case ‘avr-
objcopy’ converts the ELF program into a IHEX file (‘-O’ specifies output type), ‘-R’ will
remove the section name given (‘.eeprom’). Finally, ‘avrdude’ itself uploads the hex data to
the arduino’s embedded flash, with the correct protocols that the bootloader is expecting.
The parameters ‘-F’, ‘-V’, and ‘-c’ will force-override checking the device signature, disable
automatically verifying upload, and specify the programmer id. ‘-p’ specifies the part
number, ‘-P’ specifies the port, ‘-b’ specifies the baud rate, and ‘-U’ specifies the memory
operation.

#! /bin/bash
avr-gcc -Os -DF_CPU=16000000UL -mmcu=atmega328p -c -o led.o led.c
avr-gcc -mmcu=atmega328p led.o -o led
avr-objcopy -O ihex -R .eeprom led led.hex
avrdude -F -V -c arduino -p ATMEGA328P -P /dev/ttyACM0 -b 115200 -U flash:w:led.hex

#include <avr/io.h>
#include <util/delay.h>

#define BLINK_DELAY_MS 123

int main (void)
{
 /* set pin 5 of PORTB for output*/
 DDRB |= _BV(DDB5);

 while(1) {
 /* set pin 5 high to turn led on */
 PORTB |= _BV(PORTB5);
 _delay_ms(BLINK_DELAY_MS);

 /* set pin 5 low to turn led off */
 PORTB &= ~_BV(PORTB5);
 _delay_ms(BLINK_DELAY_MS);
 }
}

Appendix – Blink Code
#define BLINK_SPEED 5

// the setup function runs once when you press reset or power the board
void setup() {
 // initialize digital pin LED_BUILTIN as an output.
 pinMode(LED_BUILTIN, OUTPUT);
}

// the loop function runs over and over again forever
void loop() {
 digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(BLINK_SPEED); // wait for a second
 digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the voltage LOW
 delay(BLINK_SPEED); // wait for a second
}

Capture 1: ~9600 baud rate

Lab 2
Introduction
Part 1a – RS232 Serial Transmit
First, using a slightly modified version of the “DigitalreadSerial” program, digital pin 2 of the
Arduino is read and the state is written to the serial port and read on the PC. A ‘1’ appears
when you wire pin 2 to HIGH (5v) and a ‘0’ appears when you tie pin 2 to LOW (GND, 0V).

With the oscilloscope, the TX signal from the Arduino is captured and the signal baud rate
is measured. As expected, the bit rate is 9600, or about 104.2uS per bit.

It was discovered that besides the ‘”0”’ that the Arduino was sending, it would also send a
carriage return and line feed (newline). A bit patterns of 0011_0000 (0x30) represents an
ASCII ‘0’ character, and a 0x31 represents a ‘1’.

Capture 2: Serial capture

Part 1b – RS232 Serial Transmit and Receive
This part of the lab involves sending and receiving data from the Arduino through it’s
(UART) serial port. The Analog Discover 2 from Digilent was used as a logic analyzer to spy
on the serial protocol and decrypt the data being sent to and from the Arduino.

The sketch works by first initializing a serial connection to the PC ‘Serial.begin(9600)’, and
then the loop function is repeatably executed. In the loop function, the ‘if’ statement checks
if there is data available at the serial port which is buffered (64 byte buffer size). If data is
available (‘Serial.available()’), it’s assigned to our ‘data’ variable with Serial.read() and then
echo’d back to the serial port as a transmission (‘Serial.print(data)’);.

Code 1: DigitalReadSerial 100ms

/*
 DigitalReadSerial

 Reads a digital input on pin 2, prints the result to the Serial Monitor

 This example code is in the public domain.

 http://www.arduino.cc/en/Tutorial/DigitalReadSerial
*/

// digital pin 2 has a pushbutton attached to it. Give it a name:
int pushButton = 2;

// the setup routine runs once when you press reset:
void setup() {
 // initialize serial communication at 9600 bits per second:
 Serial.begin(9600);
 // make the pushbutton's pin an input:
 pinMode(pushButton, INPUT);
}

// the loop routine runs over and over again forever:
void loop() {
 // read the input pin:
 int buttonState = digitalRead(pushButton);
 // print out the state of the button:
 Serial.println(buttonState);
 delay(100); // delay in between reads for stability
}

Notice that there is an approximately 1.014ms delay between the start of the received data
and the start of the echo’d data. This delay is probably due to the fact that the
Serial.available() buffer waits for an entire transmission (8 bits) before returning a ‘1’. With
this program, the transmission from the Arduino is precisely the same as what is sent to the
device.

Code 2: Echoing serial

char data;

void setup() {
 Serial.begin(9600);

}

void loop() {
 /* Check if data has been sent from the computer: */
 if (Serial.available()) {
 /* read the most recent byte */
 data = Serial.read();

 /* ECHO the value that was read, back to the serial port. */
 Serial.print(data);
 }

}

Capture 3: Data caught, and then sent back

Part 2 – I2C Port Expander
In this part of the lab, the objective is to connect and use a I/O (input/output) expander for
the Arduino. The expander communicates with the two-wire I2C interface on the Arduino
and provides an additional 8 GPIO pins that can be written to and read from. The address
pins on the MCP23008 were tied low to make the device address 010 0000 (0x20, 32).

All eight of the GPIO pins on the MCP23008 chip were wired to LEDs with 330 ohm resisters
in series. The program on the Arduino tells the MCP23008 to light the LEDs in a counter
fashion from zero to 256 (0 LEDS to all 8 lit). This operation was verified and worked as
expected.

Capture 4: I2C Capture of count update

Code 3: I2C sketch

#include "Wire.h";

void setup() {
 Wire.begin(); // Initializes the wire library

 Wire.beginTransmission(32); // transmit to device #32 (0x20)
 //device address in datasheet)
 Wire.write(byte(0x00)); // Address of the direction register
 Wire.write(byte(0x00)); // Write 0x00 to register (set to output)
 Wire.endTransmission(); // stop transmission

}

byte val = 0;

void loop() {
 Wire.beginTransmission(32); // Talk to our device
 Wire.write(byte(0x09)); // Specify the GPIO register
 Wire.write(val); // write our value to the GPIO register
 Wire.endTransmission(); // End transmission

 val++; // Increment value by 1
 if (val == 256) { // Check if value is greater than 8 bits
 val = 0; // Reset back to 0 if maxed out
 }
 delay(500); // End If statement

 /* It should be noted that the 'val' variable will overflow at 256 anyway,
 * and probably doesn't need to be reset back to 0 manually.
 */
}

Part 3 – SPI Port Expander
In this part of the lab, we replace the I2C port expander with a near-identical device that
uses the SPI serial protocol instead of I2C. I wired up the Arduino to the device with pin 13
going to SCK of the device, pin 12 going to SO, pin 11 going to SI, and pin 10 going to CS of
the pin.

All eight of the GPIO pins on the MCP23S08 chip were wired to LEDs with 330 ohm resisters
in series. The program on the Arduino tells the MCP23S08 to light the LEDs in a counter
fashion from zero to 256 (0 LEDS to all 8 lit). This operation was verified and worked as
expected.

Code 4: MCP23S08 SPI Sketch

#include <SPI.h>; // Include the SPI library from Arduino

const uint8_t csPin = 10;

void setup() {
 SPI.begin(); // Start up the SPI library
 pinMode(csPin, OUTPUT); // Set digital pin 10 to an OUTPUT pin

 digitalWrite(csPin, LOW); // Ground our chip select pin
 SPI.transfer(0x40); // Specify the address of the device
 SPI.transfer(byte(0x00)); // Address of the direction register
 SPI.transfer(byte(0x00)); // Write 0x00 to register (set to output)
 digitalWrite(csPin, HIGH); // Set our chip select pin high

}

byte val = 0; // Our incrementing counter variable.

void loop() {
 digitalWrite(csPin, LOW); // Ground our chip select pin
 SPI.transfer(0x40); // Specify the address of the device
 SPI.transfer(byte(0x09)); // Specify the GPIO register
 SPI.transfer(val); // write our value to the GPIO register
 digitalWrite(csPin, HIGH); // Set our chip select pin high

 val++; // Increment value by 1
 if (val == 256) { // Check if value is greater than 8 bits
 val = 0; // Reset back to 0 if maxed out
 } // End If statement
 delay(500); // Delay by 500ms
}

Lab 3
The objective of this lab is to learn how to interface a microcontroller (Arduino Uno) with an
LCD display and a Real-Time Clock IC.

Part 1
The example code (Hello World) was taken from the class website and uploaded to the Uno
after wiring the microcontroller to the LCD module as per the instructions found on
sparkfun’s website and in the lab book. (https://learn.sparkfun.com/tutorials/basic-
character-lcd-hookup-guide/all)

Figures 1 and 2 show the captured waveform from startup to the code loop in which the
display is updated to show seconds since the last reset.

Figure 1: LCD Logic Waveform

https://learn.sparkfun.com/tutorials/basic-character-lcd-hookup-guide/all
https://learn.sparkfun.com/tutorials/basic-character-lcd-hookup-guide/all

Function Descriptions
lcd.begin(16, 2);
Prior to figure 2, the command 0x3 is sent three times, which is part of the device
initialization routine. Specifically this is ‘set function, 8-bit data’. The last single nibble sent
is 0x2, which signifies to the device that it is operating in 4-bit mode. The next nibbles (0x28
together), are a ‘Function set’ defining a two-line display, 4-bit, and 5x8 font. 0x0C (0-12)
turns ON the display, but leaves off the cursor and blinking of cursor position. 0x01 (0-1)
clears the display. Finally, 0x06 sets the entry mode of the display to have the cursor
increment by one every write and not shift the display.

lcd.print(“hello, world!”)
The first nibble sent with RS high are 0x8 and 0x6, which reference the ‘h’ character in
GCRAM, displaying it on the screen, every other character specified to the function is
printed similarity.

lcd.setCursor(0, 1)
This function asserts the RS line LOW, addresses the DDRAM instruction and specifies that
the cursor is now at position 0x40. Because the instruction is 0x8, the data sent becomes
0xC0 (12-0).

Figure 2: Detailed Capture

Figure 3: Next line

Part 2
In this part of the lab we setup and serially communicate with a Real Time Cock integrated
circuit. The example code (Real_Time_Clock.ino) was taken from the class page, minors
errors fixed, and loaded into the Uno.

Capture 5: Time incrementing from RTC

In capture 6, the ‘loop’ is repeating again. 0X68 is the address of the device, and the WR can
means the LSB bit is clear (LOW), specifying a WRITE operation to the device. The data
written is simply 0x00, or the address of seconds register in the RTC. This effectively sets up
the RTC to sequentially read through all of it’s timekeeping registers in the following READ
operations.

The packet is 0x68, RD, which has the LSB bit set (HIGH), which signifies that the Arduino
is reading data from the RTC. The 9th bit after the data is set to LOW by the RTC as an
acknowledge, this happens after every read.

Capture 8 is the
next byte transmitted after the READ request, this data being the seconds register inside of
the RTC. As expected, when operating normally, this data increments by 1 every second in
the lower nibble. The upper nibble is the 10s digit in the seconds. In this case the seconds
were 38 and 39.

Capture 6: Loop Start

Capture 7: Loop

Capture 8: Seconds incrementing

The following bytes represent the minutes, hours, day of the week, date, month, and year
values from the real time clock.

Notice that in capture 9 everything aside from the minutes and seconds is either zero or
one. This is because when the device initializes, it has to be programmed with the current
date and time. In order, 0x00 is hours, 0x01 is the day of the week, 0x01 is the date, 0x01
is the month, 0x00 is the year. Capture 10 shows the relevant post from the Uno.

Bit Operations
In the code, there are some cryptic lines involved in decoding the data from the RTC.

‘(month & 0x10) >> 4’ converts the month’s “10” bit to an integer by masking the month
data with 0b0001_0000, which when AND’d with the month data, will result in either
0b0001_0000 or 0b0000_0000. These two options represent if a month is before October
(10th month), or after. These two options are then shifted to the right by 4 digits to place the
singular bit (1 or 0) at the start of the byte to be printed to the serial monitor as a 0 or 1
instead of a 0 or 16. This is per the datasheet’s description of the registers.

Capture 9: All reads

Capture 10: Serial print from the microcontroller

 // Print date to serial port
 Serial.print("Date: ");
 Serial.print((month & 0x10)>>4);
 Serial.print(month & 0x0F);
 Serial.print("/");
 Serial.print((date & 0x70)>>4);
 Serial.print(date & 0x0F);
 Serial.print("/");
 Serial.print((year & 0x70)>>4);
 Serial.print(year & 0x0F);

‘month & 0x0F’ similarly masks the month data (which is essentially 0b000X_XXXX) to
select the lower four bits to represent 0b0000_XXXX. The Xs represent either a 0 or a 1, and
are defined by the current month as reported from the RTC. For example, 0b0000_0001
would be January, 0b0000_0010 would be February, and so on. Once the data is converted
to 0b0000_XXXX, it’s simply printed to the serial console as an integer. 0X0000_0100 would
get printed as 4, and so on.

For the month, date, and year, the same code is used to select the bits representing the 10s
and 1s of the respective values. In the date and year, the bits describing how many 10s
there are have two bits instead of one. Instead of 0b000X_0000 like the month, they use
0b00XX_0000, because there can be only 12 months, but 31 days and 99 years. There is
actually probably an error in the example code here, as the 10s for the year should be 0xF0
instead of 0x70 like the date. 0x07 only allows a year up to 0b0111_1001, or 0x3F, or 79.
Similarly, the date’s mask may be too large.

The seconds, minutes, and hours data is all decoded similarly.

Capture 11: Registers

In Code 5, the device is configured so that the loop may operate correctly. First, the byte
0x00 is written to the device to set the register pointer to the ‘seconds’ register. Then, the
line ‘Wire.requestFrom(0x68,1);` states the Uno is reading data from the RTC. Data is
then read with ‘sec = Wire.read();’, which puts the value of the seconds register in the
‘sec’ variable. The Uno then sets the register back to 0x00 (seconds) and writes ‘sec &
0x7F’, which is 0b0111_1111 & 0bXXXX_XXXX. This operation results in 0b0XXX_XXXX,
which clears the CH bit. The CH bit, if set, stops the clock from operating.

Part 3
In this part of the lab, I took what I learned from
the other two parts and made a digital clock using
the LCD and RTC IC. The code can be found in the
appendix, and Image 1 shows the clock in action,
with the image perfectly timed with the seconds
increment from 46 to 47.

In addition to reading from the RTC, functions
were written to set the date and time on the device
as well to make it a fully functional clock.

Code 5: Setup code

 Wire.beginTransmission(0x68);
 Wire.write(0); // set the address
 Wire.endTransmission(); // stop transmitting

 byte sec;

 Wire.requestFrom(0x68,1); // read one byte
 if(Wire.available() == 1)
 sec = Wire.read(); // read a byte from the buffer

 Wire.beginTransmission(0x68);
 Wire.write(0); // set the address
 Wire.write(sec & 0x7F); // clear CH bit
 Wire.endTransmission(); // stop transmitting

Image 1: Digital Clock

Extra Credit
In addition to setting the time and date on the RTC, a battery was connected to the Vbat pin
on it to keep time even when the arduino was shut off.

It’s evident from Images 3 thru 4 that the
device did not lose time during the power
loss from the Arduino.

The two AA batteries together are the Vbat
source and are wired to pin 3 of the RTC
and to the common GND of the project.

The RTC can continue to operate without
the Arduino UNO because of internal
circuitry which disables the I2C bus if Vcc
drops within 1.25 * Vbat, which is 4V in my
case. The RTC continues to operate off of
the battery even if the power fails and can
operate for up to 10yrs on just 48mAh
according to the datasheet.

Image 3: Before Shutdown Image 2: During Shutdown

Image 4: After Shutdown

Conclusion
Altogether, I learned how to program and use a standard LCD module and a real time clock.
Both separately, and in use together to form a digital clock complete with offline
timekeeping. In addition to the programs displays and discussed here, a sketch was written
to directly initialize and display characters on the LCD by simple use of the digitalWrite()
function in Arduino and the LCD’s datasheet.

Appendix
DigitalClock.ino
#include <Wire.h>
#include <LiquidCrystal.h>

#define RTC_ADDR 0x68

#define RTC_SEC 0x00
#define RTC_MIN 0x01
#define RTC_HRS 0x02
#define RTC_DAY 0x03
#define RTC_DATE 0x04
#define RTC_MONTH 0x05
#define RTC_YEAR 0x06

void I2C_write(byte addr, byte regAddr, byte data, bool sendData = true);

const int rs = 12, en = 11, d4 = 5, d5 = 4, d6 = 3, d7 = 2;
LiquidCrystal lcd(rs, en, d4, d5, d6, d7);

void setup() {
 Wire.begin();
 Serial.begin(9600);
 Serial.println("Digital Clock Init");

 lcd.begin(16, 2);
 lcd.print("hello, world!");

 I2C_write(RTC_ADDR, RTC_SEC, 0); // Set seconds to 0 to clear the CH bit

 // Set time (Seconds, Minutes, Hours)
 RTC_SetTime(30, 30, 16);

 // Set date (Date, month, year)
 I2C_write(RTC_ADDR, RTC_SEC, 0, false); // Set RTC register pointer to 0x00;

 // Read in our values
 byte seconds = I2C_readNextByte(RTC_ADDR); // receive a byte as character
 byte minutes = I2C_readNextByte(RTC_ADDR); // receive a byte as character
 byte hours = I2C_readNextByte(RTC_ADDR); // receive a byte as character
 byte day = I2C_readNextByte(RTC_ADDR); // receive a byte as character
 byte date = I2C_readNextByte(RTC_ADDR); // receive a byte as character
 byte month = I2C_readNextByte(RTC_ADDR); // receive a byte as character
 byte year = I2C_readNextByte(RTC_ADDR); // receive a byte as character

 // Print and decode our date
 lcd.setCursor(0, 0);
 lcd.print("Date: ");
 lcd.print((month & 0x10) >> 4);
 lcd.print(month & 0x0F);
 lcd.print("/");
 lcd.print((date & 0x70) >> 4);
 lcd.print(date & 0x0F);
 lcd.print("/");
 lcd.print((year & 0x70) >> 4);
 lcd.print(year & 0x0F);

 // Print and decode our time
 lcd.setCursor(0, 1);
 lcd.print("Time: ");
 lcd.print(hours);
 lcd.print(":");
 lcd.print((minutes & 0x70) >> 4);
 lcd.print(minutes & 0x0F);
 lcd.print(":");
 lcd.print((seconds & 0x70) >> 4);
 lcd.print(seconds & 0x0F);

 delay(1000);

}

// Write a byte to the I2C bus, optionally just write the register
// address
void I2C_write(byte addr, byte regAddr, byte data, bool sendData) {
 Wire.beginTransmission(addr);
 Wire.write(regAddr);
 if (sendData)
 Wire.write(data);
 Wire.endTransmission();
}

// Read a byte from the I2C bus
byte I2C_readByte(byte addr, byte regAddr) {
 byte ret;

 Wire.beginTransmission(0x68);
 Wire.write(regAddr); // set the address
 Wire.endTransmission(); // stop transmitting
 Wire.requestFrom(addr, 1); // read one byte
 if (Wire.available() == 1)
 ret = Wire.read(); // read a byte from the buffer
 return ret;
}
 RTC_SetDate(21, 10, 20);
}

void loop() {
 lcd.clear();

// Continue reading bytes from the I2C bus
byte I2C_readNextByte(byte addr) {
 byte ret;
 Wire.requestFrom(addr, 1); // read one byte
 if (Wire.available() == 1)
 ret = Wire.read(); // read a byte from the buffer
 return ret;
}

// Set the time in the RTC IC

void RTC_SetTime(uint8_t seconds, uint8_t minutes, uint8_t hours) {
 uint8_t secTens = (seconds / 10 > 5) ? 0 : seconds / 10;
 uint8_t secOnes = seconds % 10;

 uint8_t minTens = (minutes / 10 > 5) ? 0 : minutes / 10;
 uint8_t minOnes = minutes % 10;

 Wire.beginTransmission(RTC_ADDR);
 Wire.write(0x00);
 Wire.write((secTens << 4) | secOnes);
 Wire.write((minTens << 4) | minOnes);
 Wire.write(hours);
 Wire.endTransmission();
}

// Set the date in the RTC IC
void RTC_SetDate(uint8_t date, uint8_t month, uint8_t year) {
 uint8_t dateTen = (date / 10 > 5) ? 0 : date / 10;
 uint8_t dateOnes = date % 10;

 uint8_t monthTens = (month / 10 > 5) ? 0 : month / 10;
 uint8_t monthOnes = month % 10;

 uint8_t yearTens = (year / 10 > 5) ? 0 : year / 10;
 uint8_t yearOnes = year % 10;

 Wire.beginTransmission(RTC_ADDR);
 Wire.write(0x04);
 Wire.write((dateTen << 4) | dateOnes);
 Wire.write((monthTens << 4) | monthOnes);
 Wire.write((yearTens << 4) | yearOnes);
 Wire.endTransmission();
}

Real_Time_Clock.ino
/*
 Real Time Clock Demonstration
 Allan Douglas
 Oregon Tech, 2017
 */

#include <Wire.h>

void setup() {

 Wire.begin();
 Serial.begin(9600);
 Serial.println("RTC Demonstration");

 Wire.beginTransmission(0x68);
 Wire.write(0); // set the address
 Wire.endTransmission(); // stop transmitting

 byte sec;

 Wire.requestFrom(0x68,1); // read one byte
 if(Wire.available() == 1)
 sec = Wire.read(); // read a byte from the buffer

 Wire.beginTransmission(0x68);
 Wire.write(0); // set the address
 Wire.write(sec & 0x7F); // clear CH bit
 Wire.endTransmission(); // stop transmitting
}

void loop() {
 Wire.beginTransmission(0x68);
 Wire.write(0); // sends value byte
 Wire.endTransmission(); // stop transmitting

 Wire.requestFrom(0x68, 7); // request 7 bytes from the RTC

 if(Wire.available() == 7) // slave may send less than requested
 {
 byte seconds = Wire.read(); // receive a byte as character
 byte minutes = Wire.read(); // receive a byte as character
 byte hours = Wire.read(); // receive a byte as character
 byte day = Wire.read(); // receive a byte as character
 byte date = Wire.read(); // receive a byte as character
 byte month = Wire.read(); // receive a byte as character

 byte year = Wire.read(); // receive a byte as character

 // Print date to serial port
 Serial.print("Date: ");
 Serial.print((month & 0x10)>>4);
 Serial.print(month & 0x0F);
 Serial.print("/");
 Serial.print((date & 0x70)>>4);
 Serial.print(date & 0x0F);
 Serial.print("/");
 Serial.print((year & 0x70)>>4);
 Serial.print(year & 0x0F);

 // Print time to serial port
 Serial.print(" Time: ");
 Serial.print(hours);
 Serial.print(":");
 Serial.print((minutes & 0x70)>>4);
 Serial.print(minutes & 0x0F);
 Serial.print(":");
 Serial.print((seconds & 0x70)>>4);
 Serial.print(seconds & 0x0F);
 Serial.println("");
 }

 delay(1000);
}

Lab 4
The objective of this lab is to use the interrupts and timers on the Arduino Uno. This allows
us to have the microcontroller stop normal execution to deal with external changes in a
circuit, or to stop normal execution to deal with a timed task.

Part 1 – Interrupt Speed Test
The Uno was programmed to
increment a count by one when a
pin changed values. The change
on digital pin 2 is sent as an
interrupt to the Uno and handled
in a special function.

The interrupts() function will re-
enable the Arduino’s interrupts if
they’ve been disabled. The
attachInterrupt() function allows
you to tie one of your functions to a specific interrupt source, such as an external pin state.

The count and prev_count
variables in the code must be
defined as volatile because
otherwise the compiler might
assume that, per normal operation,
the variable might never change.
By making the variables volatile we
make sure the compiler knows that
the variables can be changed at
any time (due to the interrupts
primarily).

It’s observed in the operation of the code that there’s a maximum speed at which the
function generator can run before the count on the serial monitor starts to skip values.
Captures 15 and 16 show the serial monitor’s values, and captures 12 and 13 show the
function generator waveform (yellow) and the Arduino’s TX waveform (blue).

Capture 13: After Skipping

Capture 12: Right before skipping occurs

There are skips in the count because the process of sending data to the computer eventually
takes longer than the time it takes to increment the counter in the interrupt. The interrupt
starts firing more than once during the time when the serial bus is active, and has not yet
finished sending the last number. The baud rate will effect how fast the serial data is
communicated back to the computer, and if we increase it, we should be able to increase the
interrupt rate as well without any skips in the count.

If we set the baud rate to 115200, we can increase the function generator frequency to
approximately 690Hz before skipping occurs again. Again, the entire number is
communicated to the computer much faster faster with the higher baud rate and so the
interrupt rate can be much higher before triggering twice in a single serial transmission.

Capture 14: Serial monitor without skipping

Capture 15: Serial monitor with skipping

Part 2 – Measuring Pulse Duration
In this part of the lab, I look at using the internal timers or interrupts of the Arduino to
measure the duration of a pulse from a function generator. The provided ‘pulse_timer’ sketch
was taken from the class website and used.

The pulse() function serves to read the sense pin and set the RISING and FALLING edge

times with use of the micros() function. The setup() function initializes a higher speed serial

connection [Serial.begin(115200)], sets the input pin mode, attaches the ISR to interrupt 0,

and sets the update flag to zero. The command attachInterrupt(0, pulse, CHANGE) will

call the function ‘pulse’ whenever the ‘0’ interrupt is called, in this case a ‘CHANGE’ on

INT0, which is digital pin 2. The update flag is used in the loop() function to know when to
send the pulse width to the computer via the Serial port. Once the loop is finished sending
the data to the computer, the update flag is reset. The update flag is only set once the pulse
goes HIGH and then LOW again. Timer/Counter0 is used for the delay(), millis(), and

micros() functions.

We set the function generator to a 1kHz 5VPP square wave with a 50% duty cycle. In
measuring the waveform ON time with the oscilloscope, we find it to be exactly 500uS,
which is what the value is reported by the Arduino (Capture 16, delta X). If we adjust the
function generator frequency to 10kHz, the oscilloscope reports an ON time of 50uS, but the
Arduino reports values between 48 and 52 (Capture 17, delta X).

Capture 16: 1kHz

Capture 17: 10kHz

If the duty cycle on the function generator is increased to approximately 75%, we begin
seeing negative numbers reported through the serial monitor. Most other measurements are
nearly correct, with 75uS being the actual ON time and 76-80 being the reported values by
the Arduino. A negative number is reported when the Arduino calculates that the endTime

was BEFORE the startTime. This condition can occur if the Arduino first reads a FALLING
edge before it reads a RISING edge in the interrupt service routine.

Conclusion
In this lab I learned the basics of setting up and using the external interrupts on the
Arduino Uno. The hardest part of the lab was probably in figuring out how the second
program worked and understanding how negative numbers could be reported. In addition to
learning about pin interrupts, it was useful to research how the timers are used in delay(),
micros(), and millis().

Capture 18: Negative numbers

Capture 19: Oscilloscope capture

Appendix – Part 1
/* Pulse Duration Timer

 * Oregon Institute of Technology, 2015

 *

 * Allan A. Douglas

 */

volatile boolean update_flag;

volatile unsigned long startTime;

volatile unsigned long endTime;

int sensePin = 2; // interrupt source

// interrupt service routine

void pulse() {

 if (digitalRead(sensePin)) {

 startTime = micros();

 update_flag = 0;

 }

 else {

 endTime = micros();

 update_flag = 1;

 }

}

void setup() {

 Serial.begin(115200);

 pinMode(sensePin, INPUT);

 attachInterrupt(0, pulse, CHANGE);

 update_flag = 0;

}

void loop() {

 if (update_flag) {

 Serial.println (long(endTime - startTime));

 update_flag = 0;

 }

}

Lab 5
Introduction
The objective of this lab is to use the internal timers in the Arduino Uno to do Pulse Width
Moduluation, controlling some external circuitry. We create a variable DC voltage, vary the
intensity of an LED, and control the speed of a DC motor.

Part 1
In part 1 of this lab, two different methods of creating PWM are used and their accuracy
compared. First, the Arduino function “analogWrite()” is used to create a 50% duty cycle
wave.

Afterwards, the PWM value was stepped from 0 to 255 (0-100% Duty Cycle) in steps of 15.
The average value of voltage over the capacitor was measured and recorded in Table 1. A
higher duty cycle resulted in a higher capacitor voltage, because the average ON time of the
output wave was greater, charging the capacitor more than it was discharging it.

Taking into account the output voltage being less than 5V, we calculate the expected
capacitor voltage with 4.6V instead of 5V. 4.6V was the maximum output voltage from the
timer pin. Tables 1 and 2 both used this for consistency.

Capture 20: Arduino Output

A second Arduino sketch was written (part 1b) making use of the internal timer control
registers to setup Timer1 of the Atmega328p. The sketch code is in the appendix. The
frequency was approximately 62kHz instead of 490Hz, making a much smoother capacitor
output voltage. Capture 21 shows the highspeed PWM setup from register manipulation.

Duty Cycle Expected Capacitor VoltageMeasured Capacitor Voltage
0 0 0
15 0.271 0.265
30 0.541 0.531
45 0.812 0.795
60 1.082 1.063
75 1.353 1.33
90 1.624 1.596
105 1.894 1.864
120 2.165 2.13
135 2.435 2.394
150 2.706 2.66
165 2.976 2.922
180 3.247 3.186
195 3.518 3.445
210 3.788 3.715
225 4.059 3.975
240 4.329 4.235
255 4.6 4.5

Table 1: AnalogWrite

Capture 21: Highspeed PWM

Using the fast-PWM method, Table 2 was generated by
stepping the duty cycle in steps of 32 (12.5%). The
capacitor voltage is greatly smoothed by the higher
frequency because the resistor limits the rate of change of
voltage, and when the frequency is so high, the capacitor
doesn’t have time to change very much at at all.

Part 2
In this part of the lab, the PWM waveform is used to
sinusoidally change the brightness of an LED. The RC
circuit from the previous part of the lab was
disconnected and the output pin was connected to an
LED through a 330 ohm resistor. This can be seen in
image 6.

The code for this part of the lab is in the appendix.

Duty Cycle Expected Capacitor Voltage Measured Capacitor Voltage
0 0 0
32 0.577 0.6
64 1.155 1.18
96 1.732 1.76
128 2.309 2.34
160 2.886 2.93
192 3.464 3.51
224 4.041 4.09
256 4.618 4.63

Table 2: Manual timer manipulation

Image 6: LED Circuit in action

Image 5: RC Circuit

Part 3
In this part of the lab, a DC motor is controlled via PWM from the Arduino.

The diode is required because when the motor is turned OFF (the transistor is driven off by
the PWM signal), the current in the coils in the motor keeps flowing. Without a diode, large
voltages can be built up by the motor as the current attempts to leave the motor. Image 7
shows the motor circuit in action.

The circuit operates by buffering the PWM output from the Arduino with a Bipolar Junction
Transistor. The Transistor is capable of handling much higher currents than the Arduino
itself and is necessary for running big loads like a motor. The current entering the Base
terminal of the transistor is supplied by the Arduino, and is then multiplied by the BJT to
run the motor.

Image 7: Motor circuit

Image 8: DC motor PWM

Because of the high load of the motor, the Arduino’s 5v rail had to be verified and care taken
to make sure it wasn’t dropping too low. In Image 8, the output voltage rail is shown in
Yellow and PWM to the BJT is shown in blue.

Conclusion
At first, a small motor was used, and I think it must have been a 3.3v device or similar
because it took huge amounts of current and it was very, very fast. It was in the order of
almost half an amp at 5v and was worrisome at full speed. The motor pictured in Image 7 is
another motor that took about 100mA at full load and was much nicer to work with.

Code Appendix
Part 1a
const int motorPin = 9;

int motorSpeed = 127;

void setup() {
 analogWrite(motorPin, motorSpeed);
 delay(1000);
}

void loop() {
}

Part 1b
/*
 * Author: Zachary Whitlock
 * Date: 03/11/2020
 *
 * Written to control timer1 for EE-333, lab 5, part 1b.
 */
const int motorPin = 9; // OC1A is PB1, which is digital pin 9...
int motorSpeed = 127;

void setup() {
 noInterrupts();

 pinMode(13, OUTPUT);

 // Set pins 9 and 10 to OUTPUT
 DDRB |= 0b00000110;

 byte R1A_mask = 0x00;
 byte R1B_mask = 0x00;

 // Toggle OC1A, might as well use OC1B
 R1A_mask |= (0b1010 << 4);
 // Enable fast-pwm, 8-bit mode (WGM bits)
 R1A_mask |= 0b01;

 // Enable fast-pwm, 8-bit mode (WGM bits)
 R1B_mask |= (0b01 << 3);
 // Clock I/O, no prescaler
 R1B_mask |= 0b001;

 //R1A_mask = 0b10000001;
 //R1B_mask = 0b00001001;
 TCCR1A = R1A_mask;
 TCCR1B = R1B_mask;

 TIMSK1 = 0b00000000;

 TCNT1 = 0;

 interrupts();

 OCR1A = 127;
 OCR1B = 240;

 delay(1000);
}

void loop() {
 if (TIFR1 != 0x00) {
 TIFR1 = 0x00;
 }

 // Increase the duty cycle once every 7.5 seconds
 for (int x = 0; x < 255;) {
 OCR1A = x;
 x += 32;
 delay(7500);
 }
 delay(7500);

}

Part 2
/*
 * Author: Zachary Whitlock
 * Date: 03/11/2020
 *
 * Written to control timer1 for EE-333, lab 5, part 2.
 */

double sin_step = 0.0;

void setup() {
 noInterrupts();
 // Set pins 9 and 10 to OUTPUT
 DDRB |= 0b00000110;

 byte R1A_mask = 0x00;
 byte R1B_mask = 0x00;

 // Toggle OC1A, might as well use OC1B too
 R1A_mask |= (0b1010 << 4);
 // Enable fast-pwm, 8-bit mode (WGM bits)
 R1A_mask |= 0b01;

 // Enable fast-pwm, 8-bit mode (WGM bits)
 R1B_mask |= (0b01 << 3);
 // Clock I/O, no prescaler
 R1B_mask |= 0b001;

 TCCR1A = R1A_mask;
 TCCR1B = R1B_mask;

 // Disable interrupts
 TIMSK1 = 0b00000000;
 interrupts();
}

// Vary the duty cycle with a sinusoidal periodic function
void loop() {
 // sin() appears to work without the math library.
 OCR1A = (unsigned int)(127.0 * sin(sin_step) + 128.0);
 delay(15); // 15 seems like the sweet spot
 sin_step = sin_step + 0.1;
}

Part 3
/*
 * Author: Zachary Whitlock
 * Date: 03/11/2020
 *
 * Written to control timer1 for EE-333, lab 5, part 2.
 */

#define MOTOR_MIN 150
#define MOTOR_MAX 255

double sin_step = 0.0;

void setup() {
 noInterrupts();
 // Set pins 9 and 10 to OUTPUT
 DDRB |= 0b00000110;

 byte R1A_mask = 0x00;
 byte R1B_mask = 0x00;

 // Toggle OC1A, might as well use OC1B too
 R1A_mask |= (0b1010 << 4);
 // Enable fast-pwm, 8-bit mode (WGM bits)
 R1A_mask |= 0b01;

 // Enable fast-pwm, 8-bit mode (WGM bits)
 R1B_mask |= (0b01 << 3);
 // Clock I/O, no prescaler
 R1B_mask |= 0b001;

 TCCR1A = R1A_mask;
 TCCR1B = R1B_mask;

 // Disable interrupts
 TIMSK1 = 0b00000000;
 interrupts();

 OCR1A = 250;
}

// Vary the duty cycle to speed up/down the motor
void loop() {
 for (int x = MOTOR_MIN; x < MOTOR_MAX; x++) {
 OCR1A = x;
 delay(50);
 }
 for (int x = MOTOR_MAX; x > MOTOR_MIN; x--) {
 OCR1A = x;
 delay(50);
 }

}

Lab 6
Introduction
The purpose of this lab is to demonstrate the use of the Arduino Uno’s internal Analog to
Digital Converter (ADC). The ADC will be used to measure an analog voltage from a
potentiometer and from a function generator, as well as the temperature from a temperature
sensor. Readings are displayed both in the Arduino Serial Monitor and on an LCD display.

Part 1
In this part of the lab, the ADC is utilized to
measure a variable voltage supplied by a voltage
divider in the form of a potentiometer.

The registers internal to the ATmega328p MCU are
manipulated directly to enable, and configure the
10-bit ADC. The ADC is enabled and configured
with a prescaler value of 4 from the internal clock
speed. The complete circuit is shown in image 4.

The ADC is 10-bits, which means there are 1024
possible values that it will display. To map this to a
voltage reading, we divide the ADC reading by the
number of possible state (1024) and multiply by
our max voltage (5V). This results in about 4.9mV
per LSB (least-significant-bit), or 0.0049V. Due to
this, I’ve decided that the appropriate precision past the
decimal point is to show three places, since the lowest
step is in millivolts, and the third decimal point
represents that.

Additionally, the voltage was stepped in approximately
0.5V increments using the potentiometer. Each step was
read with a Fluke multimeter and the ADC. Table 3
compares the readings of the ADC vs the multimeter.

Image 9: LCD and Potentiometer

Multimeter LCD Displayed
0.088 0.137
0.5 0.552
1 1.094

1.518 1.558
2.028 2.109
2.526 2.573
3.052 3.12
3.538 3.628
4.011 4.048
4.507 4.609
4.828 4.922

Table 3: Multimeter Vs ADC

Part 2
In this part of the lab we use the ADC to measure a sinusoidal wave created by a function
generator. The Arduino is programmed to measure and report the minimum voltage, the
maximum voltage, and the period of the sinewave.

The ADC was setup such that it’s prescaler would provide it a frequency of 125kHz, 16Mhz/
128. This should result in a rough sampling frequency of 9615 samples per second.
Captures 22-27 show the ADC’s reading for the minimum, maximum, and period of the sine
wave, along with the oscilloscope’s reading for comparison. Not evident in Captures 22-27 is
the actual sampling frequency of approximately 8987. The actual sampling frequency would
have been shown except for time requirements on submitting the lab.

Capture 22: 100Hz - Oscilloscope

Capture 23: 100Hz - Serial Monitor

In the interest of time and of personal preference, I’ve set the peak-to-peak value of the sine
wave to 2V instead of 5, and it varies between ~1.5v and ~3.5v. As mentioned later in the
document, the Arduino’s reference voltage was significantly lower than 5V and the lower
measurement was more interesting to me than a clipped value.

Capture 25: 1kHz - Serial Monitor

Capture 24: 1kHz - Oscilloscope

It’s evident in Captures 22-27 that the sampling frequency of ~8987 is not fast enough to
accurately measure the period of signals faster than 1kHz using the code designed by me. If
the ADCSRA register is set so that the prescaler is running as fast as possible, the samples
per second increases to nearly 200k, which is the stated limit in the datasheet.

The minimum and maximum functions were re-written several times to be as accurate as
possible. Because this was done without interrupts, it was especially difficult to produce a
robust measurement. Additionally, code was added to (attempt to) calculate the actual Vcc
value of the Arduino, since the ADC’s reference is roughly equal to Vcc. My Vcc was
significantly less than 5v, which made measurements wildly inaccurate. This code requires
the measurement of the internal “1.1v” reference, which required the one-time measurement
of the actual Vcc. My internal 1.1v reference is closer to ~1.076V.

Capture 26: 10kHz - Oscilloscope

Capture 27: 10kHz - Serial Monitor

Part 3 – Temperature Measurement
In this part of the lab, the Arduino is used to measure it’s internal temperature as well as an
external temperature sensor. The ADC is used like in the other two parts of the lab, but this
time it’s not used in free-running mode. The ADC’s interrupt is enabled, and for better
readings the Arduino is put into a low power more to decrease the amount of noise on the
ADC. Once the ADC sample is complete, the Arduino wakes and continues with the rest of
the program, calculating the temperatures from the measurements and displaying them.
Capture 28 shows the result shown on the Serial Monitor.

Although the lab calls for a DMM to
measure the temperature of the
temperature probe, I didn’t have one on
hand that supported a temperature
measurement. Instead, I used a cooking
thermometer secured to the TMP36
temperature measuring IC.

Capture 28: Serial Monitor

Image 10: Temperature verification

Thermometer Arduino

25.5 24.8

31 32.0

35 34.5

40 39.1

45 44.2

50.5 50.3

55 50.5

This table compares the cooking-thermometer measurement to that of the Arduino. The
Arduino was fairly accurate until values over ~50C, which was the maximum value that
could be read with the 1.1V reference. Should the ADC reference be switched to Vcc, a much
higher temperature could be measured, with a penalty to precision.

Image 11 shows the circuit that the lab
made use. Additional capacitors were
added to the Aref pin of the Arduino and
the center pin of the TMP36 to further
increase accuracy and make it less
necessary to run averages in software.

The internal 1.1V reference was found to
be much closer to 1V, and so that’s what I
used in the calculations for temperature.
When the 1.1V reference is selected in the
ADC configuration, the Arduino ‘Aref’ pin
outputted it for measuring with the
oscilloscope. The value was averaged over
about 100ms

Image 11: Circuit

Conclusion & Discussion
In part 2, the sampling frequency was significantly decreased to just over 1kHz if the code
only checked the ADIF bit without resetting to 0. While it made sense that the limited
sampling frequency would be inaccurate when measuring a 10kHz signal, there was a
length of time spent figuring out why 1kHz signals were inaccurate.

In part 3, much time was spent on trying to read the TS_OFFSET and TS_GAIN values
mentioned in the Atmel datasheet. A unique value was determined for the TS_OFFSET to be
149, but strange issues were encountered when attempting to gleam the TS_GAIN value. If
the value was used in any way except as an unsigned integer, it seemed to crash the
microcontroller in the setup function. I did learn a little bit about the flash programming
procedures and AVR assembly in the process, and got a glimpse at what it would take to
make a boot-loader. For brevity, the non-working code is not included in the appendix for
part 3.

In conclusion, this lab was great practice for using the ATmega328p’s internal, 10-bit, ADC.
The limits of precision were fairly well explored and multiple measurement ranges were
explored. In the future, using the ADC in the Arduino or other devices using the
ATMega328p will be much easier, and now I have some reference code for the future.

Appendix
Code – Part 1
/*
 * Author: Zachary Whitlock
 * Program: lab6-part1
 * Date: 10/11/20
 * Description:
 * Reads a voltage using the built-in ADC of an ATMega328p and displays
 * the result on the serial monitor and an LCD.
 */

#include <Wire.h>
#include <LiquidCrystal.h>

const int rs = 12, en = 11, d4 = 5, d5 = 4, d6 = 3, d7 = 2;
LiquidCrystal lcd(rs, en, d4, d5, d6, d7);
void setup() {

 Serial.begin(115200);

 // ADMUX
 // REF = VCC
 // MUX, ADC0, 0b0000
 ADMUX = 0b01000000;

 // ADCSRA
 // ADEN - enable, 1
 // ADPS - prescale, 4, 0b010
 ADCSRA = 0b11100010;

 // ADCSRB
 // ADTS - free running, 0b000
 ADCSRB = 0b00000000;

 // Read ADCL and then ADCH (0x78, 0x79)
}

void loop() {
 int ADCReading;
 float voltage;

 ADCReading = ADCL;
 ADCReading |= ADCH << 8;

 voltage = (ADCReading / 1024.0) * 5.0;

 lcd.setCursor(0, 1);
 lcd.print("Voltage: ");
 lcd.print(voltage, 3);
 Serial.println(voltage, 3);
 delay(100);
}

Code – Part 2
/*
 Author: Zachary Whitlock
 Program: lab6-part2
 Date: 10/11/20

 Description:
 Reads a min/max voltage and period using the built-in ADC of an ATMega328p and
displays
 the result on the serial monitor and an LCD.
*/

#include <Wire.h>
#include <LiquidCrystal.h>

#define REQUIRED_COUNT 3
#define PERIOD_HYST 200

const int rs = 12, en = 11, d4 = 5, d5 = 4, d6 = 3, d7 = 2;
LiquidCrystal lcd(rs, en, d4, d5, d6, d7);

// Measured internal "1.1V" reference (in millivolts)
const int internalRef = 1076;

int readVcc;

void setup() {
 long calculatedOffset;
 Serial.begin(115200);
 lcd.begin(16, 2);

 // ADMUX
 // REF = VCC
 // MUX, 1.1Vref, 0b1110
 ADMUX = 0b01001110;

 // ADCSRA
 // ADEN - enable, 1
 // ADSC - start, 1
 // ADPS - prescale (125kHz) 128, 0b111
 ADCSRA = 0b11100111;

 // ADCSRB
 // ADTS - free running, 0b000
 ADCSRB = 0b00000000;

 // Idea from
 // https://hackingmajenkoblog.wordpress.com/2016/02/01/making-accurate-adc-
readings-on-the-arduino/
 // Calculate the real VCC
 delay(20);
 calculatedOffset = ADCL;
 calculatedOffset |= ADCH << 8;
 readVcc = internalRef * 1024L / calculatedOffset;

 // MUX, ADC1, 0b0001
 ADMUX = 0b01000001;
 ADCSRA = 0b11100111;

 lcd.setCursor(0, 1);
 lcd.print("Vcc: ");
 lcd.print(readVcc / 1000.0, 3);

 Serial.print("Readings per second: ");
 Serial.println(readingsPerSecond());

 Serial.println("Min, Max, T(ms)");

}

void loop() {
 float maxVoltage;
 float minVoltage;

 maxVoltage = (getMax() / 1024.0) * readVcc / 1000.0;
 minVoltage = (getMin() / 1024.0) * readVcc / 1000.0;

 lcd.setCursor(0, 0);
 lcd.print("Max: ");
 lcd.print(maxVoltage, 3);
 lcd.setCursor(0, 1);
 lcd.print("Min: ");

 lcd.print(minVoltage, 3);

 Serial.print(minVoltage, 3);
 Serial.print(", ");
 Serial.print(maxVoltage, 3);
 Serial.print(", ");
 Serial.println(determinePeriod() / 1000.0, 3);

 delay(1000);

 // randomly clear LCD
 if (micros() % 100 == 0)
 lcd.clear();
}

// Returns min voltage in millivolts
int getMin() {
 int count = 0;
 int minValue = makeReading();
 int oldReading = 0;
 int oldMin = 0;
 int newReading;

 // Wait for falling edge
 newReading = makeReading();
 while (makeReading() >= newReading);

 // Sample until we stop getting values any lower
 do {
 newReading = makeReading();

 // Discard duplicate readings
 if (newReading == oldReading)
 continue;

 // If our min value is lower than our current value,

 // update the min value.
 if (minValue > newReading) {
 minValue = newReading;
 }

 // If our old min value is the same as the current min value
 // and we aren't going up
 // increment counter by 1.
 if (minValue == oldMin && !(newReading >= oldReading)) {
 count++;
 }

 oldMin = minValue;
 oldReading = newReading;

 } while (count < REQUIRED_COUNT);

 return minValue;
}

// Returns max voltage in millivolts
int getMax() {
 int count = 0;
 int maxValue = makeReading();
 int oldReading = 0;
 int oldMax = 0;
 int newReading;

 // Wait for rising edge
 newReading = makeReading();
 while (makeReading() <= newReading);

 // Sample until we stop getting values any higher
 do {
 newReading = makeReading();

 // Discard duplicate readings
 if (newReading == oldReading)
 continue;

 /*
 Serial.print(newReading);
 Serial.print(", ");
 Serial.println(maxValue);
 */

 // If our max value is lower than our current value,
 // update the max value.
 if (maxValue < newReading) {
 maxValue = newReading;
 }

 // If our old max value is the same as the current max value
 // and we aren't going down
 // increment counter by 1.
 if (maxValue == oldMax && !(newReading <= oldReading)) {
 count++;
 }

 oldMax = maxValue;
 oldReading = newReading;

 } while (count < REQUIRED_COUNT);

 return maxValue;
}

// Return period in microseconds
long determinePeriod() {
 long timeNow;
 long elapsedTime = 0;
 int count = 0;
 int oldReading;
 int newReading;;

 // Wait for a reading at a middle value
 int middle = (getMin() + getMax()) / 2;
 do {

 newReading = makeReading();
 } while (!(newReading < (middle + PERIOD_HYST)) || !(newReading > (middle -
PERIOD_HYST)));

 oldReading = makeReading();

 // Wait for identical reading (2x)
 timeNow = micros();
 do {
 newReading = makeReading();
 //Serial.print(oldReading);
 //Serial.print(", ");
 //Serial.println(newReading);

 if (newReading < (oldReading + PERIOD_HYST) && newReading > (oldReading -
PERIOD_HYST)) {
 elapsedTime += (micros() - timeNow);
 timeNow = micros();
 count++;
 // wait for a new reading
 while (makeReading() < (oldReading + PERIOD_HYST) && makeReading() > (oldReading -
PERIOD_HYST));
 }

 } while (count < 100);

 // Report elapsed time
 return (elapsedTime / (count - 1));
}

// Take a reading from the ADC
int makeReading() {
 int ADCReading;
 while (!bit_is_set(ADCSRA, ADIF));
 ADCReading = ADCL;
 ADCReading |= ADCH << 8;
 ADCSRA |= 1 << ADIF;
 return ADCReading;
}

long readingsPerSecond() {
 int timeNow = micros();
 long i = 0;
 while ((timeNow + 1000000) > micros()) {
 makeReading();
 i++;
 }

 return i;
}

Code – Part 3
/*
 Author: Zachary Whitlock
 Program: lab6-part3
 Date: 10/11/20
 Description:
 Measure an internal MCU temperature and an external temperature sensor
 using the ADC.
*/

#include <LiquidCrystal.h>

const int rs = 12, en = 11, d4 = 5, d5 = 4, d6 = 3, d7 = 2;
LiquidCrystal lcd(rs, en, d4, d5, d6, d7);

// Measured internal "1.1V" reference (in millivolts)
const int internalRef = 1006;

void setup() {
 Serial.begin(115200);
 pinMode(13, OUTPUT);
 lcd.begin(16, 2);

 // ADMUX
 // REF = 1.1V
 // MUX, 1.1V, 0b1110
 ADMUX = 0b11001110;

 // ADCSRA

 // ADEN - enable, 1
 // ADSC - start, 1
 // ADPS - prescale 2, 0b000
 ADCSRA = 0b11000000;

 // ADCSRB
 // ADTS - free running, 0b000
 ADCSRB = 0b00000000;
}

void loop() {
 interrupts();
 float internalTemp;
 float externalTemp;

 // Measure internal temperature
 // MUX, ADC8 (temp.), 0b1000
 ADCSRA = 0b10001111;
 ADMUX = 0b11001000;
 internalTemp = lowNoiseRead();
 internalTemp = (internalTemp / 1024.0) * (internalRef / 1000.0);
 internalTemp = (internalTemp - 0.314)/0.001 + 25;
 Serial.print("Internal C: ");
 Serial.println(internalTemp, 1);

 delay(10);

 // Measure TMP36 (IC) temperature
 // MUX, ADC0, 0b0000
 ADCSRA = 0b10001111;
 ADMUX = 0b11000000;
 externalTemp = lowNoiseRead();
 externalTemp = (externalTemp / 1024.0) * (internalRef / 1000.0);
 externalTemp = (externalTemp - 0.5) / 0.01;
 Serial.print("External C: ");
 Serial.println(externalTemp, 3);

 lcd.setCursor(0, 0);

 lcd.print("External: ");
 lcd.print(externalTemp, 1);
 lcd.setCursor(0, 1);
 lcd.print("Internal: ");
 lcd.print(internalTemp, 1);

 delay(500);
}

ISR(ADC_vect) {
 // Disable sleep
 SMCR = 0b00000010;
};

int lowNoiseRead() {
 int ADCReading;
 // Goto sleep for low-noise read
 SMCR = 0b00000011; // enable sleep
 asm("SLEEP");
 // Will awake once the conversion is done.

 ADCReading = ADCL;
 ADCReading |= ADCH << 8;
 return ADCReading;
}

Lab 7
Introduction
In this lab, Infrared (IR) light will be used to do wireless communication between two
Arduinos. Ken Shirrif’s IR library (IRremote) is used for the IR communication, and the
hardware consists of 2x Arduino Unos, an IR reciever, and an IR LED.

Part 1
In this part of the lab, the first Arduino is connected to the IR receiver and the IRremote
example code called “IRreceiveDumpV2.ino”. The signal pin of the IR reciever module is
attached to digital pin 11 of the Arduino. Additionally, an oscilloscope is hooked up to the
output of the IR module as well.

Code Explanation
IRrecv: The code starts by initializing a new C++ class structure called ‘IRrecv’, which
provides easy access to the functions available for getting and decoding data from the IR
receiver.

Setup: The program enables the built-in LED of the Arduino, starts the serial bus at
115200, prints out some text about the program, starts receiving with
“IrReceiver.enableIRIn()”, ties the built-in LED to the IRecv with “IrReceiver.blink13(true);”,
and prints out more text about the program on the serial monitor.

Loop: The loop section, from a bird’s eye view, checks if there is data ready to decode and
prints out the results if so. An ‘if’ statement checks ‘IrReceiver.decode()’ before attempting to
print out the data. ‘IrReceiver.decode()’ will check the state machine of the IRecv class and
make sure the state is stopped (IR_REC_STATE_STOP). If the state machine hasn’t reached
the end point yet, ‘IrReceiver.decode()’ will return ‘false’.

The code uses ‘IrReceiver.results.overflow’ to see if the received data was too large for the
buffer, and advises the user to increase the buffer size if necessary. If actually ready to
decode, the data is printed out using class methods of the ‘IRrecv’ class such as
‘printResultShort’. These print functions are internally complicated and difficult to explain,
but they essentially they will print out the captured data in several different ways.

At the end of the loop, the class’s method ‘IrReceiver.resume()’ is called. This function
literally just restarts the state machine and places it in idle mode (IR_REC_STATE_IDLE).

Captures

Capture 29: Repeat Code

Capture 30: Power button code

Decoding
The oscilloscope waveform shown in Capture 30 is analyzed to find the code that the remote
is sending. The Arduino program claims the protocol is NEC, which will be used to decode
the waveform.

In NEC, a logical “Zero” is a 562.5uS pulse followed by a 562.5uS space. A logical “One” is
the same 562.5uS pulse but it’s followed by a 1.6875mS space. The protocol starts off with
a 9mS leading pulse and a 4.5ms space. It should be noted that the oscilloscope shows that
the data is inverted, the ACTIVE state is 0V, not 5v. Hence a pulse is when the oscilloscope
shows 0v, not 5.

The address of the receiving device is sent first, with the standard logical inverse sent
directly following. In this case, there are eight pulses with 562.5uS spaces following them,
which means there are 8x ‘8’s. Directly following this pattern are eight pulses with ~1.63mS
spaces after them, meaning 8x ‘1’s. This means the address of the receiving device is
supposed to be 0x00.

The command sent is 0b1010001001011101 according
to the NEC protocol. Illustration 1 shows how the second
half of the pattern is the logical inverse of the first half.
This is represented by 0xA25D in hex, which is exactly
what the program says is the command of the reciever.

Capture 31: Serial monitor capture of power button code

Illustration 1: Power Command

0b1010 0010
0b0101 1101

Part 2
In this part of the lab, a second Arduino is used to send a optical signal to the receiving
Arduino. An IR LED is attached to the second microcontroller through a 100 ohm resistor,
and the “IRSendDemo” code is uploaded.

Code Explanation
Setup: The program starts by initializing the serial connection to the PC, and enables the
built-in LED.

Loop: In the program loop, several different data sets are sent every two seconds, with a

delay of 3 seconds at the end of the loop. First, raw data is send via the sendRaw() function,
which uses an array of 16 bit integers to define the amount of microseconds between pules.
The first set of data sent is 0xFB04.

The second piece of data is 0xFB0C and is sent using the sendRaw_P() function. This send
function takes in ticks instead of microseconds to decide when to send a pulse.

The third and final piece of data sent is 0xFF00, and the sendNECStandard() function is
used. The standard send function simply accepts the actual hexadecimal data to be sent.

Captures

Capture 32: Oscilloscope Capture of Recieved Data

Image 12 shows the actual bread-boarded circuits.

Decoding
Following the same decoding method as in part 1, the
decoded bits from the oscilloscope waveform are:
0b00100000110111110001000011101111, or
0x20DF10EF. This is the first set of data sent in the loop,
the ‘NEC 0xFB04’, and it matches the time signatures
written in the sketch.

Conclusion
It was confusing to me the way the code given for part 2
listed commands like “FB04” and FB0C”. The bytes seemed
to match what I would expect out of NEC, but the rest
didn’t. I don’t know if this is an error on my part, or the
author of the code.

In this lab, I learned about the NEC IR protocol and how
it’s used to transmit data using Infrared Light. I also
learned about the library I was using (‘IRremote’) which
will be useful in future projects.

Capture 33: Serial Monitor of Recieved Data

Image 12: IR LED and reciever

Appendix
Code – Part 1
//--
// Include the IRremote library header
//
#include <IRremote.h>

//--
// Tell IRremote which Arduino pin is connected to the IR Receiver (TSOP4838)
//
#if defined(ESP32)
int IR_RECEIVE_PIN = 15;
#else
int IR_RECEIVE_PIN = 11;
#endif
IRrecv IrReceiver(IR_RECEIVE_PIN);

//
+==
===
// Configure the Arduino
//
void setup() {
 pinMode(LED_BUILTIN, OUTPUT);

 Serial.begin(115200); // Status message will be sent to PC at 9600 baud
#if defined(__AVR_ATmega32U4__) || defined(SERIAL_USB) ||
defined(SERIAL_PORT_USBVIRTUAL)
 delay(2000); // To be able to connect Serial monitor after reset and before first printout
#endif
 // Just to know which program is running on my Arduino
 Serial.println(F("START " __FILE__ " from " __DATE__));

 IrReceiver.enableIRIn(); // Start the receiver
 IrReceiver.blink13(true); // Enable feedback LED

 Serial.print(F("Ready to receive IR signals at pin "));
 Serial.println(IR_RECEIVE_PIN);

}

//
+==
===
// The repeating section of the code
//
void loop() {
 if (IrReceiver.decode()) { // Grab an IR code
 // Check if the buffer overflowed
 if (IrReceiver.results.overflow) {
 Serial.println("IR code too long. Edit IRremoteInt.h and increase
RAW_BUFFER_LENGTH");
 return;
 }
 Serial.println(); // 2 blank lines between entries
 Serial.println();
 IrReceiver.printResultShort(&Serial);

 Serial.println(F("Result in internal ticks (50 us)"));
 IrReceiver.printIRResultRawFormatted(&Serial, false); // Output the results in RAW
format
 Serial.println(F("Result in microseconds"));
 IrReceiver.printIRResultRawFormatted(&Serial, true); // Output the results in RAW
format
 Serial.println(); // blank line between entries
 Serial.println(F("Result as internal ticks (50 us) array"));
 IrReceiver.printIRResultAsCArray(&Serial, false); // Output the results as uint8_t
source code array of ticks
 Serial.println(F("Result as microseconds array"));
 IrReceiver.printIRResultAsCArray(&Serial, true); // Output the results as uint16_t
source code array of micros
 IrReceiver.printIRResultAsCVariables(&Serial); // Output address and data as source
code variables
 IrReceiver.printIRResultAsPronto(&Serial);

 IrReceiver.resume(); // Prepare for the next value
 }
}

Code – Part 2
/*
 * IRremote: IRsendRawDemo - demonstrates sending IR codes with sendRaw
 * An IR LED must be connected to Arduino PWM pin 3.
 * Initially coded 2009 Ken Shirriff http://www.righto.com
 *
 * IRsendRawDemo - added by AnalysIR (via www.AnalysIR.com), 24 August 2015
 *
 * This example shows how to send a RAW signal using the IRremote library.
 * The example signal is actually a 32 bit NEC signal.
 * Remote Control button: LGTV Power On/Off.
 * Hex Value: 0x20DF10EF, 32 bits
 *
 * It is more efficient to use the sendNEC function to send NEC signals.
 * Use of sendRaw here, serves only as an example of using the function.
 *
 */

#include <IRremote.h>

IRsend IrSender;

// On the Zero and others we switch explicitly to SerialUSB
#if defined(ARDUINO_ARCH_SAMD)
#define Serial SerialUSB
#endif

void setup() {
 pinMode(LED_BUILTIN, OUTPUT);

 Serial.begin(115200);
#if defined(__AVR_ATmega32U4__) || defined(SERIAL_USB) ||
defined(SERIAL_PORT_USBVIRTUAL)
 delay(2000); // To be able to connect Serial monitor after reset and before first printout
#endif
 // Just to know which program is running on my Arduino
 Serial.println(F("START " __FILE__ " from " __DATE__));
 Serial.print(F("Ready to send IR signals at pin "));
 Serial.println(IR_SEND_PIN);

}

/*
 * NEC address=0xFB0C, command=0x18
 *
 * This is data in byte format.
 * The uint8_t/byte elements contain the number of ticks in 50 us
 * The integer format contains the (number of ticks * 50) if generated by IRremote,
 * so the integer format has the same resolution but requires double space.
 */
const uint8_t irSignalP[] PROGMEM
= { 180, 90 /*Start bit*/, 11, 11, 11, 11, 11, 34, 11, 34/*0011 0xC of address LSB first*/,
11, 11, 11, 11, 11, 11, 11, 11/*0000*/,
 11, 34, 11, 34, 11, 11, 11, 34/*1101 0xB*/, 11, 34, 11, 34, 11, 34, 11, 34/*1111*/,
11, 11, 11, 11, 11, 11, 11,
 34/*0001 0x08 of command LSB first*/, 11, 34, 11, 11, 11, 11, 11, 11/*1000 0x01*/,
11, 34, 11, 34, 11, 34, 11,
 11/*1110 Inverted 8 of command*/, 11, 11, 11, 34, 11, 34, 11, 34/*0111 inverted 1 of
command*/, 11 /*stop bit*/};

void loop() {
 int khz = 38; // 38kHz carrier frequency for the NEC protocol
 /*
 * Send hand crafted data from RAM
 * The values are NOT multiple of 50, but are taken from the NEC timing definitions
 */
 Serial.println(F("Send NEC 0xFB04, 0x08 with exact timing (integer format)"));
 const uint16_t irSignal[] = { 9000, 4500, 560, 560, 560, 560, 560, 1690, 560, 560, 560,
560, 560, 560, 560, 560, 560, 560,
 560, 1690, 560, 1690, 560, 560, 560, 1690, 560, 1690, 560, 1690, 560, 1690, 560,
1690, 560, 560, 560, 560, 560, 560,
 560, 1690, 560, 560, 560, 560, 560, 560, 560, 560, 560, 1690, 560, 1690, 560,
1690, 560, 560, 560, 1690, 560, 1690, 560,
 1690, 560, 1690, 560 }; // Using exact NEC timing
 IrSender.sendRaw(irSignal, sizeof(irSignal) / sizeof(irSignal[0]), khz); // Note the approach
used to automatically calculate the size of the array.

 // 0010 0000 1101 1111 0001 0000 1110 1111 (0x20DF10EF)

 delay(2000);

 /*
 * Send byte data direct from FLASH
 * Note the approach used to automatically calculate the size of the array.
 */
 Serial.println(F("Send NEC 0xFB0C, 0x18 with tick resolution timing (byte format) "));
 IrSender.sendRaw_P(irSignalP, sizeof(irSignalP) / sizeof(irSignalP[0]), khz);

 // 0011 0000 1101 1111 0001 1000 1110 0111 (0x30DF18E7)

 delay(2000);

 Serial.println(F("Send NEC 0xFF00, 0x17 generated"));
 IrSender.sendNECStandard(0xFF00, 0x17, 0);

 delay(3000);
}

Lab 8
Introduction
The objective of this lab is to interface the Arduino with a WiFi module. The specific module
in this case is the popular ESP8266 device, which will be used as a serial-to-WiFi adapter
for creating a web server.

Part 1
Setup
The ESP8266 itself is a 3.3V device that does not work at all with 5V. The Arduino, an
Atmega328p, operates on 5V. To allow communication between the Arduino and the
ESP8266, additional circuitry is required to convert the logic levels. I didn’t have a logic level
converter so a simple one was created. I referenced the schematic of Sparkfun’s MOSFET
logic-level converter and created a BJT version for 2N3904 BJTs.

This didn’t seem to work particularly well for 5v-3.3v in practice. For that, a simple
common-collector PNP circuit was used.

Figure 4: BJT Level Shifter

Figure 5 is the final circuit including
both level shifters.

The level shifters are required to
prevent damage to the 3.3V ESP8266.
Additionally, the 5V device may not
properly read the logic signals from
the 3.3 device.

Figure 5: Circuit

Part 2
Firmware Update
Updating the firmware was difficult. I did the procedure on Linux, Ubuntu to be precise. I
used a tool called “esptool.py”, with a command-line interface. Uploading the binary from
the class website was no problem, but every time I tried to use the ESP8266 afterwards it
would send a checksum error and not respond to any AT commands. Eventually, after trying
half a dozen other binaries from other sources (including the epressif official binaries), I
found that the recommended mode for most ESP8266s didn’t work for me. Originally the SPI
flash module on the ESP8266 board uses the “dio” mode, but I had to use the “dout” mode
in order for any binary to work.

Once I figured that out, I re-flashed the original binary from the class website and verified
that the AT commands worked.

Figure 6: Flasher Output

Part 3
Website Connection

Code Explanation
The SoftwareSerial.h file is required in this program for creating an additional RX/TX port.
The Arduino originally has just the one which is used for communicating with the PC, so
software is used to write and receive data from digital pins 8&9.

Figure 8: Webpage before submitting name

Figure 7: Website after submitting name

The setup of the code sets up the ESP8266 to provide a webpage after connecting to my
network.

The loop code checks to see if there is data ready to be read from the ESP. If the message
from the ESP starts with “IPD” then the rest is printed to the serial monitor. If the message
starts with “name”, the code reads the text that was sent from the ESP and places it in a
variable called “name”. The code will supply HTML when a new client connects to the ESP,
and if given a name the code will embed it in the HTML.

The function ‘strcpy’ is used liberally to copy pieces of HTML code into the “html” string. In
addition to the generic HTML, an text entry box and a button are sent to the querying
computer for submitting the name to the ESP.

The getReply() function is required for getting text from the ESP. It takes a time in
milliseconds and attempts to read data from the software RX/TX for that duration. Upon a
reply read from the software RX pin, it is printed to the Serial monitor. Additionally, the data
is copied to the ‘reply’ global string so it can be used in other places in the program.

Figure 9: Serial Monitor

Conclusion
In this lab I learned how to use the ESP826 as a wifi interface for the simpler Arduino. I
know it’s possible to program these by themselves and use them as a I/O limited
microcontroller with built-in WiFi capabilities. They have a lot of flash and more can be
added using SPI flash modules which are commonly used. They are more complex than
Arduinos and have a different architecture which makes them not so easy to develop for,
though.

It was educational to debug the firmware process since I had to try so many binaries. It gave
me a good idea as to what is available for the device and what people use it for. It was useful
to have a 3.3V/5V FTDI converter so I could test my connections and circuit. I also used my
oscilloscope to check the output of my level shifters and to verify their output. I believe that
the design didn’t work very well because it seemed like the RX pin of the ESP8266 was
pulled high fairly stiffly. Finally, when I got the firmware working, the code supplied for the
Arduino worked without a problem and I was able to open the IP address given to the ESP in
a web browser.

Appendix
// Basic Arduino & ESP8266 webserver
//
// uses AltSoftSerial download from
https://www.pjrc.com/teensy/td_libs_AltSoftSerial.html
// this can be replaced with the normal software serial

#include <SoftwareSerial.h>
// Arduino pin 08 for RX
// Arduino Pin 09 for TX

SoftwareSerial espSerial(8, 9);

const bool printReply = true;
const char line[] = "-----\n\r";
int loopCount=0;

char html[256];
char command[20];
char reply[500]; // you wouldn't normally do this

char ipAddress [20];
char name[30];

int lenHtml = 0;
char temp[5];

void setup()
{
 Serial.begin(9600);
 Serial.println("Start\r\n\r\n");

 espSerial.begin(9600);

 // reset the ESP8266
 Serial.println("reset the module");
 espSerial.print("AT+RST\r\n");
 getReply(1000);

 // configure as a station
 Serial.println("Change to station mode");
 espSerial.print("AT+CWMODE=1\r\n");
 getReply(1500);
 getReply(1000);
 getReply(1000);

 // List networks I can see
 //Serial.println("Listing networks: ");
 //espSerial.print("AT+CWLAP\r\n");
 //getReply(600);

 // connect to the network. Uses DHCP. ip will be assigned by the router.
 Serial.println("Connect to a network ");

 // Enter the SSID and password for your own network
 espSerial.print("AT+CWJAP=\"SSID\",\"password\"\r\n");
 getReply(6000);

 // get ip address
 Serial.println("Get the ip address assigned by the router");
 espSerial.print("AT+CIFSR\r\n");
 getReply(5000);

 // parse ip address.
 int len = strlen(reply);
 bool done=false;
 bool error = false;

 int pos = 0;
 while (!done)
 {
 if (reply[pos] == 10) {
 done = true;
 }
 pos++;
 if (pos > len) {
 done = true;
 error = true;
 }
 }

 if (!error)
 {
 int buffpos = 0;
 done = false;
 while (!done)
 {
 if (reply[pos] == 13) {
 done = true;
 }
 else {
 ipAddress[buffpos] = reply[pos];
 buffpos++; pos++;
 }
 }
 ipAddress[buffpos] = 0;
 }
 else {
 strcpy(ipAddress,"ERROR");
 }

 // configure for multiple connections
 Serial.println("Set for multiple connections");
 espSerial.print("AT+CIPMUX=1\r\n");
 getReply(1500);

 // start server on port 80
 Serial.println("Start the server");
 espSerial.print("AT+CIPSERVER=1,80\r\n");
 getReply(1500);

 Serial.println("");

 Serial.println("Waiting for page request");
 Serial.print("Connect to ");
 Serial.println(ipAddress);
 Serial.println("");
}

int web_delay = 2000;

void loop()
{
 if(espSerial.available()) // check if the ESP8266 is sending data
 {
 // this is the +IPD reply - it is quite long.
 // normally you would not need to copy the whole message in to a variable you can
copy up to "HOST" only
 // or you can just search the data character by character as you read the serial port.
 getReply(2000);

 bool foundIPD = false;
 for (int i=0; i<strlen(reply); i++)
 {
 if ((reply[i]=='I') && (reply[i+1]=='P') && (reply[i+2]=='D')) { foundIPD = true; }
 }

 if (foundIPD)
 {

 loopCount++;
 // Serial.print("Have a request. Loop = "); Serial.println(loopCount);
Serial.println("");

 // check to see if we have a name - look for name=
 bool haveName = false;
 int nameStartPos = 0;
 for (int i=0; i<strlen(reply); i++)
 {
 if (!haveName) // just get the first occurrence of name
 {
 if ((reply[i]=='n') && (reply[i+1]=='a') && (reply[i+2]=='m') && (reply[i+3]=='e')
&& (reply[i+4]=='='))

 {
 haveName = true;
 nameStartPos = i+5;
 }
 }
 }

 // get the name - copy everything from nameStartPos to the first space character
 if (haveName)
 {
 int tempPos = 0;
 bool finishedCopying = false;
 for (int i=nameStartPos; i<strlen(reply); i++)
 {
 if ((reply[i]==' ') && !finishedCopying) {
 finishedCopying = true;
 }
 if (!finishedCopying) {
 name[tempPos] = reply[i];
 tempPos++;
 }
 }
 name[tempPos] = 0;
 }

 if (haveName) {
 Serial.print("name = ");
 Serial.println(name);
 Serial.println("");
 }
 else {
 Serial.println("no name entered");
 Serial.println("");
 }

 // start sending the HTML

 strcpy(html,"<html><head></head><body>");
 strcat(html,"<h1>ESP8266 Webserver</h1>");
 strcat(html,"<p>Served by Arduino and ESP8266</p>");
 strcat(html,"<p>Request number ");
 itoa(loopCount, temp, 10);
 strcat(html,temp);
 strcat(html,"</p>");

 if (haveName)
 {
 // write name
 strcat(html,"<p>Your name is ");
 strcat(html, name);
 strcat(html,"</p>");
 }

 // Send the command to ESP8266
 lenHtml = strlen(html);
 itoa(lenHtml, temp, 10);

 strcpy(command,"AT+CIPSEND=0,");
 strcat(command,temp);
 strcat(command,"\r\n");

 espSerial.print(command);
 getReply(web_delay);
 espSerial.print(html);
 getReply(web_delay);

 // Construct the name entry box
 strcpy(html,"<form action=\"");
 strcat(html, ipAddress);
 strcat(html, "\" method=\"GET\">");
 strcat(html,"Name:
<input type=\"text\" name=\"name\">"); // new
 strcat(html,"<input type=\"submit\" value=\"Submit\"></form>"); //new
 strcat(html,"</body></html>"); // new

 // Send the command to ESP8266
 lenHtml = strlen(html);
 itoa(lenHtml, temp, 10);
 strcpy(command,"AT+CIPSEND=0,");
 itoa(lenHtml, temp, 10);
 strcat(command, temp);
 strcat(command, "\r\n");

 espSerial.print(command);
 getReply(web_delay);
 espSerial.print(html);
 getReply(web_delay);

 // close the connection
 espSerial.print("AT+CIPCLOSE=0\r\n");

 getReply(web_delay);

 } // if(espSerial.find("+IPD"))
 } //if(espSerial.available())

 delay (100);

 // drop to here and wait for next request.

}

void getReply(int wait)
{
 int tempPos = 0;
 long int time = millis();
 char c;
 boolean complete_flag = 0;

 while((time + wait) > millis() && !complete_flag)
 {
 while(espSerial.available())
 {
 c = espSerial.read();
 if (tempPos < 500) {
 reply[tempPos] = c;
 tempPos++;
 }
 if((reply[tempPos-2] == 'O' && reply[tempPos-1] == 'K') || (reply[tempPos-2] == '\n'
&& reply[tempPos-1] == '>')) {
 complete_flag = 1;
 break;
 }
 }
 reply[tempPos] = 0; //NULL
 }

 //Serial.println(millis()-time);

 if (printReply) {
 Serial.println(reply);

 Serial.println(line); }
}

	Lab 1
	Introduction
	Breadboarding
	Oscilloscope Captures – Breadboard
	Oscilloscope Captures – Uno
	Functions Descriptions
	Conclusion / Summary
	Extra Credit (Done on Linux)
	Explanations / Summaries

	Appendix – Blink Code

	Lab 2
	Introduction
	Part 1a – RS232 Serial Transmit
	Part 1b – RS232 Serial Transmit and Receive
	Part 2 – I2C Port Expander
	Part 3 – SPI Port Expander

	Lab 3
	Part 1
	Function Descriptions

	Part 2
	Bit Operations

	Part 3
	Extra Credit

	Conclusion
	Appendix
	DigitalClock.ino
	Real_Time_Clock.ino

	Lab 4
	Part 1 – Interrupt Speed Test
	Part 2 – Measuring Pulse Duration
	Conclusion
	Appendix – Part 1

	Lab 5
	Introduction
	Part 1
	Part 2
	Part 3
	Conclusion
	Code Appendix
	Part 1a
	Part 1b
	Part 2
	Part 3

	Lab 6
	Introduction
	Part 1
	Part 2
	Part 3 – Temperature Measurement
	Conclusion & Discussion
	Appendix
	Code – Part 1
	Code – Part 2
	Code – Part 3

	Lab 7
	Introduction
	Part 1
	Code Explanation
	Captures
	Decoding

	Part 2
	Code Explanation
	Captures
	Decoding

	Conclusion
	Appendix
	Code – Part 1
	Code – Part 2

	Lab 8
	Introduction
	Part 1
	Setup

	Part 2
	Firmware Update

	Part 3
	Website Connection
	Code Explanation

	Conclusion
	Appendix

